首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A stable and selective electrocatalyst for CO2 reduction was fabricated by covalently attaching graphitic carbon nitride onto multiwall carbon nanotubes (g‐C3N4/MWCNTs). The as‐prepared composite is able to reduce CO2 exclusively to CO with a maximum Faraday efficiency of 60 %, and no decay in the catalytic activity was observed even after 50 h of reaction. The enhanced catalytic activity towards CO2 reduction is attributed to the formation of active carbon–nitrogen bonds, high specific surface area, and improved material conductivity of the g‐C3N4/MWCNT composite.  相似文献   

2.
3.
炭载体的稳定性对于燃料电池电催化剂是至关重要的. 本文中采用酚醛树脂作为前驱体,二氧化硅为模板剂,制备了多介孔且石墨化程度高的炭载体(HGMC). 相比于商品Vulcan XC-72,HGMC具有中等的比表面积和高的石墨化程度,因此在电位循环扫描过程中具有较高的化学稳定性,然而HGMC碳层堆叠的结构不利于传质. 为克服这一劣势,多壁碳纳米管(MWCNTs)作为隔离物加入至HGMC中以构建具有三维多尺度结构的载体(MSGC). 与HGMC为载体担载Pt以及商品催化剂Pt/C-JM相比,由于炭载体的具有高稳定性以及三维多尺度结构,MSGC担载Pt后不仅使电催化剂的电化学稳定性提高,且氧还原反应过程中传质得到显著改善.  相似文献   

4.
A series of Fe3C/C‐Nx nanoparticles (NPs) with different nitrogen content are prepared by a simple one‐pot route. In the synthetic procedure, aniline and acetonitrile are simultaneously used as the carbon and nitrogen source. The effect of calcination temperature on the structural and functional properties of the materials is investigated. Magnetic measurement shows that the sample prepared at 800 °C (Fe3C/C‐N800 NPs) possesses the highest Ms value of 77.2 emu g?1. On testing as oxygen reduction reaction (ORR) catalysts, the sample prepared at 750 °C (Fe3C/C‐N750 NPs) shows the best ORR performance among the series, with a more positive onset potential (+0.99 V vs. RHE), higher selectivity (number of electron transfer n≈3.93), longer durability, and stronger tolerance against methanol crossover than commercial Pt/C catalysts in a 0.1 m KOH solution. Moreover, in acidic solution, the excellent ORR activity and stability are also exhibited.  相似文献   

5.
6.
An interconnected framework of mesoporous graphitic‐C3N4 nanofibers merged with in situ incorporated nitrogen‐rich carbon has been prepared. The unique composition and structure of the nanofibers as well as strong coupling between the components endow them with efficient light‐harvesting properties, improved charged separation, and a multidimensional electron transport path that enhance the performance of hydrogen production. The as‐obtained catalyst exhibits an extremely high hydrogen‐evolution rate of 16885 μmol h?1 g?1, and a remarkable apparent quantum efficiency of 14.3 % at 420 nm without any cocatalysts, which is much higher than most reported g‐C3N4‐based photocatalysts even in the presence of Pt‐based cocatalysts.  相似文献   

7.
Flexible non‐metal oxygen electrodes fabricated from phosphorus‐doped graphitic carbon nitride nano‐flowers directly grown on carbon‐fiber paper exhibit high activity and stability in reversibly catalyzing oxygen reduction and evolution reactions, which is a result of N, P dual action, enhanced mass/charge transfer, and high active surface area. The performance is comparable to that of the state‐of‐the‐art transition‐metal, noble‐metal, and non‐metal catalysts. Remarkably, the flexible nature of these oxygen electrodes allows their use in folded and rolled‐up forms, and directly as cathodes in Zn–air batteries, featuring low charge/discharge overpotential and long lifetime.  相似文献   

8.
通过简便的方法合成出了Pt-CeOx/CNxNT催化剂。该催化剂以聚吡咯纳米管碳化后的含氮碳纳米管作为载体,以氧化铈作为助催化剂。实验表明,由于二氧化铈的储氧性能,也由于CNxNT载体中氮元素的促进作用和其本身独特的一维中空结构,Pt-CeOx/CNxNT催化剂的氧还原性能明显高于商业Pt/C。而催化剂优秀的稳定性则源于二氧化铈对Pt纳米颗粒和载体的保护作用。  相似文献   

9.
陈君  隆继兰 《分子催化》2017,31(5):463-471
采用水热法合成了一系列的Co-Zn-MOF材料,随后将其在高温下热解,采用自模板的方式得到双中心MOFs衍生的Co-ZnO@CN纳米催化剂.通过调节前驱体的比例和热解温度,优化了制备Co-ZnO@CN纳米催化剂的条件.利用粉末X射线衍射(XRD)和X射线光电子能谱(XPS)对Co-ZnO@CN纳米催化剂的结构及表面化学性质进行表征,采用扫描电子显微镜(SEM)和能量色散谱仪(EDS)考察了Co-ZnO@CN纳米催化剂的形貌和表面化学元素的种类和组成.通过氧还原反应(ORR)测试了催化剂的催化性能.实验结果表明当热解温度为800℃,Co与Zn摩尔质量之比为1∶2时,所得到的Co-ZnO(1∶2)@CN-800纳米催化剂的催化活性最高,其起始电势和半波电势分别为0.90和0.78 V,此外,通过计算表明该纳米催化剂在氧还原反应中氧分子还原过程遵循4e-反应路径.  相似文献   

10.
Cost‐effective and high‐performance electrocatalysts for oxygen reduction reactions (ORR) are needed for many energy storage and conversion devices. Here, we demonstrate that whey powder, a major by‐product in the dairy industry, can be used as a sustainable precursor to produce heteroatom doped carbon electrocatalysts for ORR. Rich N and S compounds in whey powders can generate abundant catalytic active sites. However, these sites are not easily accessible by reactants of ORR. A dual‐template method was used to create a hierarchically and interconnected porous structure with micropores created by ZnCl2 and large mesopores generated by fumed SiO2 particles. At the optimum mass ratio of whey power: ZnCl2 : SiO2 at 1 : 3 : 0.8, the resulting carbon material has a large specific surface area close to 2000 m2 g?1, containing 4.6 at.% of N with 39.7% as pyridinic N. This carbon material shows superior electrocatalytic activity for ORR, with an electron transfer number of 3.88 and a large kinetic limiting current density of 45.40 mA cm?2. They were employed as ORR catalysts to assemble primary zinc‐air batteries, which deliver a power density of 84.1 mW cm?2 and a specific capacity of 779.5 mAh g?1, outperforming batteries constructed using a commercial Pt/C catalyst. Our findings open new opportunities to use an abundant biomaterial, whey powder, to create high‐value‐added carbon electrocatalysts for emerging energy applications.  相似文献   

11.
The high cost and scarcity of noble metal catalysts, such as Pt, have hindered the hydrogen production from electrochemical water splitting, the oxygen reduction in fuel cells and batteries. Herein, we developed a simple template‐free approach to three‐dimensional porous carbon networks codoped with nitrogen and phosphorus by pyrolysis of a supermolecular aggregate of self‐assembled melamine, phytic acid, and graphene oxide (MPSA/GO). The pyrolyzed MPSA/GO acted as the first metal‐free bifunctional catalyst with high activities for both oxygen reduction and hydrogen evolution. Zn–air batteries with the pyrolyzed MPSA/GO air electrode showed a high peak power density (310 W g?1) and an excellent durability. Thus, the pyrolyzed MPSA/GO is a promising bifunctional catalyst for renewable energy technologies, particularly regenerative fuel cells.  相似文献   

12.
Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF‐derived carbon aerogels for various applications.  相似文献   

13.
The development of low-cost, efficient, and stable electrocatalysts for the oxygen reduction reaction (ORR) is desirable but remains a great challenge. Herein, we made a highly reactive and stable isolated single-atom Fe/N-doped porous carbon (ISA Fe/CN) catalyst with Fe loading up to 2.16 wt %. The catalyst showed excellent ORR performance with a half-wave potential (E1/2) of 0.900 V, which outperformed commercial Pt/C and most non-precious-metal catalysts reported to date. Besides exceptionally high kinetic current density (Jk) of 37.83 mV cm−2 at 0.85 V, it also had a good methanol tolerance and outstanding stability. Experiments demonstrated that maintaining the Fe as isolated atoms and incorporating nitrogen was essential to deliver the high performance. First principle calculations further attributed the high reactivity to the high efficiency of the single Fe atoms in transporting electrons to the adsorbed OH species.  相似文献   

14.
15.
An ice/salt-assisted strategy has been developed to achieve the green and efficient synthesis of ultrathin two-dimensional (2D) micro/mesoporous carbon nanosheets (CNS) with the dominant active moieties of Fe−N4 (Fe-N-CNS) as high-performance electrocatalysts for the oxygen reduction reaction (ORR). The strategy involves freeze-drying a mixture of iron porphyrin and KCl salt using ice as template followed by a confined pyrolysis with KCl as an independent sealed nanoreactor to facilitate the formation of 2D carbon nanosheets, N incorporation, and porosity creation. The well-defined assembly of ultrathin 2D carbon nanosheets ensures high utilization of D1 and D3 Fe−N4 active sites, and effectively promotes the mass transport of ORR reactants by virtue of the pronounced mesoporous structure. The resulting Fe-N-CNS electrocatalyst was shown to exhibit superior ORR activity, better electrochemical durability, and methanol tolerance towards ORR in alkaline electrolyte relative to the commercial Pt/C electrocatalyst.  相似文献   

16.
《化学:亚洲杂志》2017,12(8):860-867
Pd nanoparticles (NPs) supported on Ti‐doped graphitic carbon nitride (g‐C3N4) were synthesized by a deposition–precipitation route and a subsequent reduction with NaBH4. The features of the NPs were studied by XRD, TEM, FTIR, XPS, EXAFS and N2‐physisorption measurements. It was found that the NPs had an average size of 2.9 nm and presented a high dispersion on the surface of Ti‐doped g‐C3N4. Compared to Pd loaded on pristine g‐C3N4, the Pd NPs supported on Ti‐doped g‐C3N4 exhibited a high catalytic activity in formic acid dehydrogenation in water at room temperature. The enhanced activity could be attributed to the small Pd NPs size, as well as the strong interaction between Pd NPs and Ti‐doped g‐C3N4.  相似文献   

17.
Porous nitrogen‐rich carbon (POF‐C‐1000) that was synthesized by using a porous organic framework (POF) as a self‐sacrificing host template in a nanocasting process possessed a high degree of graphitization in an ordered structural arrangement with large domains and well‐ordered arrays of carbon sheets. POF‐C‐1000 exhibits favorable electrocatalytic activity for the oxygen‐reduction reaction (ORR) with a clear positive shift of about 40 mV in the onset potential compared to that of a traditional, commercially available Pt/C catalyst. In addition, irrespective of its moderate surface area (785 m2 g?1), POF‐C‐1000 showed a reasonable H2 adsorption of 1.6 wt % (77 K) and a CO2 uptake of 3.5 mmol g?1 (273 K).  相似文献   

18.
The major challenge of photocatalytic water splitting, the prototypical reaction for the direct production of hydrogen by using solar energy, is to develop low‐cost yet highly efficient and stable semiconductor photocatalysts. Herein, an effective strategy for synthesizing extremely active graphitic carbon nitride (g‐C3N4) from a low‐cost precursor, urea, is reported. The g‐C3N4 exhibits an extraordinary hydrogen‐evolution rate (ca. 20 000 μmol h?1 g?1 under full arc), which leads to a high turnover number (TON) of over 641 after 6 h. The reaction proceeds for more than 30 h without activity loss and results in an internal quantum yield of 26.5 % under visible light, which is nearly an order of magnitude higher than that observed for any other existing g‐C3N4 photocatalysts. Furthermore, it was found by experimental analysis and DFT calculations that as the degree of polymerization increases and the proton concentration decreases, the hydrogen‐evolution rate is significantly enhanced.  相似文献   

19.
It is a great challenge to fabricate highly efficient pH-universal electrocatalysts for oxygen reduction reaction (ORR). Herein, a facile strategy, which includes coating the Fe modified ZIF8 on Cu foil and in situ pyrolysis to evaporate and dope Cu into the MOF derived carbon, is developed to fabricate Fe/Cu−N co-doped carbon material (Cu/Fe−NC). Profiting from the modulated electron distribution and textual properties, well-designed Cu/Fe−NC exhibits superior half-wave potential (E1/2) of 0.923 V in alkaline, 0.757 V in neutral and comparable 0.801 V in acid electrolytes, respectively. Furthermore, the ultralow peroxides yield of ORR demonstrates the high selectivity of Cu/Fe−NC in full pH scale electrolytes. As expected, the self-made alkaline and neutral zinc-air batteries equipped with Cu/Fe−NC cathode display excellent discharge voltages, outstanding peak power densities and remarkable stability. This work opens a new way to fabricate highly efficient and pH-universal electrocatalysts for ORR through strategy of Fe/Cu−N co-doping, Cu foil evaporation and carbon defects capture.  相似文献   

20.
Single Mn atom on nitrogen-doped graphene (MnN4-G) has exhibited good structural stability and high activity for the adsorption and dissociation of an O2 molecule, becoming a promising single-atom catalyst (SAC) candidate for oxygen reduction reaction (ORR). However, the catalytic activity of MnN4-G for the ORR and the optimal reaction pathway remain obscure. In this work, density-functional theory calculations were employed to comprehensively investigate all the possible pathways and intermediate reactions of the ORR on MnN4-G. The feasible active sites and the most stable adsorption configurations of the intermediates and transition states during the ORR were identified. Screened from all the possibilities, three optimal four-electron O2 hydrogenation pathways with an ultralow energy barrier of 0.13 eV were discovered that are energetically more favorable than direct O2 dissociation pathways. Analysis of the free energy diagram further verified the thermodynamical feasibility of the three pathways. Thus, MnN4-G possesses superior ORR activity. This study provides a fundamental understanding of the design of highly efficient SACs for the ORR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号