首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
Embryonic chick (7-9 day) and newborn chick myocardia contain one major peak of cyclic AMP-dependent protein kinase activity as assessed by DEAE-cellulose chromatography. Evidence is presented that the cyclic AMP-dependent protein kinase activity ratios (activity in absence of cyclic AMP/activity in presence of added cyclic AMP) of homogenates prepared with low ionic strength buffer reflect the endogenous activation state of the enzyme. The cyclic AMP content of newborn chick myocardium is lower than that of 7--9 day embryonic chick myocardium; the baseline cyclic AMP-dependent protein kinase activity is correspondingly reduced. Isoproterenol produces smaller elevations in cyclic AMP and in the cyclic AMP-dependent protein kinase activity ratio of newborn chick as compared to embryonic chick myocardium. Differences in the ability of isoproterenol to elevate cyclic AMP in the different preparations are not accompanied by appropriate changes in the adenylate cyclase or phosphodiesterase activities of the corresponding broken cell preparations. Studies with the phosphodiesterase inhibitor, Ro 20 1724 indicate that the changes in the ability of isoproterenol to elevate cyclic AMP in the developing chick myocardium are due to changes in the metabolism of the cyclic nucleotide by phosphodiesterase.  相似文献   

2.
The activities of cyclic AMP phosphodiesterase (3',5'-cyclic nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) and adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] and calmodulin content during development of chick ventricular myocardium were determined. The specific activity of cyclic AMP phosphodiesterase was relatively low in early embryos, increased during embryogenesis by about 4-fold to reach highest values just before hatching, and then decreased by approx. 30% within 1 week after hatching. In contrast, adenylate cyclase did not change during embryonic development, but increased by approx. 50% within 1 week after hatching. Calmodulin content remained constant at 9 micrograms/g wet wt. during embryonic development and decreased to 6 micrograms/g wet wt. by 1 week after hatching. DEAE-Sephacel chromatography of chick ventricular supernatant revealed a single major form of cyclic nucleotide phosphodiesterase activity in early embryonic (9-day E) and hatched (6-day H) chicks. This enzyme form was eluted at approx. 0.27 M-sodium acetate, hydrolysed both cyclic AMP and cyclic GMP, and was sensitive to stimulation by Ca2+-calmodulin, with an apparent Km for calmodulin of approx. 1 nM. In contrast, ventricular supernatant from late-embryonic (18-day E) chicks contained two forms of phosphodiesterase separable on DEAE-Sephacel: the same form as that seen at other ages, plus a cyclic AMP-specific form which was eluted at approx. 0.65 M-sodium acetate and was insensitive to stimulation by Ca2+-calmodulin. The ontogenetic changes in cyclic AMP phosphodiesterase activity in chick ventricular myocardium are consistent with reported ontogenetic changes in the steady-state contents of cyclic AMP in this tissue and suggest that this enzyme may be responsible for the changes that occur in this nucleotide during development of chick myocardium.  相似文献   

3.
Cyclic nucleotide analogues have been tested for their ability to cause the morphological conversion of Chinese hamster ovary cells in culture, as well as for effects on cyclic AMP-related enzymes. The ability of the analogues to inhibit the cyclic AMP phosphodiesterase activity and to activate the cyclic AMP-dependent protein kinase activity in cell extracts has been measured. Cell cultures were incubated with the analogues and the effects on morphology, intracellular level of cyclic AMP, and in vivo protein kinase activation were determined. All analogues which induced the morphological conversion also caused in vivo activation of the cyclic AMP-dependent protein kinase. Only N6,O2′-dibutryl and N6-monobutyryl cyclic AMp caused caused on increase in intracellular cyclic AMP, presumably through inhibition of the intracellular cyclic AMP phosphodiesterase activity. The increase in cyclic AMP appears to cause the protein kinase activation. However, analogues such as 8-bromo and 8-benzylthio cyclic AMP do not cause any change in intracellular cyclic AMP level and appear to activate the intracellular cyclic AMP-dependent protein kinase directly.  相似文献   

4.
C W Davis 《Life sciences》1985,37(1):85-94
Alterations in the cyclic AMP-dependent protein kinase activity ratio in response to putative neurotransmitters and other cyclic AMP-elevating agents in intact cerebral cortical slices and Krebs-Ringer particulate preparations from cerebral cortex were examined. Both norepinephrine (30 microM) and forskolin (20 microM) produced a time-dependent increase in intracellular levels of cyclic AMP in cerebral cortical slices which was paralleled by an increase in both cyclic AMP and the protein kinase activity ratio. The increases were maximal at 5 min. and remained elevated for at least 15 min. Forskolin, norepinephrine, adenosine and isoproterenol produced a concentration-dependent increase in both cyclic AMP and the protein kinase activity ratio, however, the degree of increase observed was dissimilar. Thus, a 5-fold change in intracellular cyclic AMP resulted in only a 2-fold increase in the activity ratio. Of the agents examined, forskolin produced the most marked change in the activity ratio (from 0.23 to 0.78 at 100 microM) while isoproterenol at 100 microM produced only a 50% increase in the activity ratio. The half-time for the decline in forskolin elicited elevations of either the activity ratio or cyclic AMP was about 4-6 min. In the presence of the phosphodiesterase inhibitor, Ro 20-1724, both were significantly prolonged being 60-70% of the maximum observed immediately after forskolin stimulation, at 15 min. Potentiation of forskolin elicited increases in the activity ratio by Ro 20-1724 were also observed but the increase in the activity ratio was maximal at 7.5 min. while cyclic AMP accumulations continued to rise during the entire 15 min. incubation. Particulate preparations from cerebral cortex were found to contain a cyclic AMP-dependent protein kinase which could be activated 2 to 3-fold with either forskolin, norepinephrine, or adenosine. Unlike the intact brain slice the changes in protein kinase activity ratio and intracellular levels of cyclic AMP in cell-free particulate preparations were similar in both time and degree.  相似文献   

5.
Ontogenic relationships between levels of cyclic AMP-binding activity and protein kinase activity were examined in subcellular fractions of the cerebellum during the first 3 weeks of neonatal life. A progressive increase in cyclic AMP levels was paralleled by an increase in cyclic AMP bindign by the nuclear and cytosol fractions, but not by the mitochondrial or microsomal fractions. Utilization of heat-stable protein kinase inhibitor permtited distinction of the cyclic AMP-dependent from the cyclic AMP-independent form of the protein kinase population. Cyclic AMP-dependent protein kinase increased between days 4 and 20 to represent a progressively greater proportion of the protein kinase population. In all subcellular fractions alterations of cyclic AMP-dependent protein kinase during neonatal development paralleled changes in binding of cyclic AMP to protein in these fractions. In both the nuclear and cytosol fractions cyclic AMP-dependent protein kinase activity increased progressively between days 4 and 20, i.e. 64 ± 6 to 176 ± 16 and 79 ± 12 to 340 ± 12 pmol/min per mg protein, respectively. Cyclic AMP-dependent protein kinase activity in the mitochondrial fraction declined during the postnatal period studied, and in the microsomal fraction it rose to a non-sustained peak at 14 days and fell thereafter. Unlike the cyclic AMP-dependent form, cyclic AMP-independent protein kinase activity did not follow the ontogenetic pattern of cyclic AMP-binding activity. The specific activity of nuclear cyclic AMP-independent protein kinase did not change during days 4–20, and a non-sustained rise of cyclic AMP-independent protein kinase activity in both cytosol and microsomal fractions during the 7th–12th day tended to parallel more closely known patterns of postnatal proliferative growth. The findings reported herein indicate that the ontogenic pattern of cyclic AMP-dependent protein kinase varies between different subcellular fractions of the neonatal cerebellum, that these patterns parallel the changes in cyclic AMP-bidign activity, and suggest that the component parts of the cyclic AMP system may develop as a functional unit.  相似文献   

6.
A somatic cell genetic approach has been used to evaluate the role of cyclic AMP-dependent protein kinase in ACTH action on adrenal steroidogenesis. A mutant clone, 8BrcAMPr-1, previously was isolated from an ACTH-sensitive adrenocortical tumor cell line (clone Y1) following mutagenesis and selective growth in 8-bromoadenosine 3′, 5′-monophosphate. This study demonstrates that the 8BrcAMP4-1 cells have an altered cyclic AMP-dependent protein kinase. The protein kinase in the cytosol of the mutant characteristically requires, for half-maximal activity, concentrations of cyclic AMP 7-fold higher than those required by the enzyme in preparations from the parent. The cytosolic cyclic AMP-dependent protein kinases of Y1 and 8BrcAMPr-1 cells chromatograph similarly on columns of DEAE-cellulose. From each cell line, a major peak of activity (≥ 70% of recovered activity), designated as Peak I, elutes with 0.04–0.06 M NaCl; a second peak of activity, designated as Peak II, elutes with 0.12–0.14 M NaCl. Protein kinase activity in the Peak I fraction of mutant cells has a decreased apparent affinity (4-fold) for cyclic AMP relative to the corresponding fraction of parental Y1 cells. The protein kinase activities present in Peak II fractions from Y1 and mutant cells are indistinguishable. The protein kinase mutant exhibits poor steroidogenic responses to added ACTH and cyclic AMP; and as shown previously does not display the growth arrest and morphological changes produced in Y1 by these agents. These results suggest that cyclic AMP-dependent protein kinase is important in the regulation of adrenal steroidogenesis, morphology and growth by ACTH.  相似文献   

7.
N-6,O-2'-dibutyryl adenosine 3',5'-monophosphate kills cultured mouse lymphosarcoma cells, but not resistant mutants derived by a single-step clonal selection. Resistant clones lack the cyclic AMP binding proteins present in wild type, cyclic AMP sensitive clones. Both endogenous cyclic AMP, accumulated in response to isoproterenol or cholera toxin, and exogenous dibutyryl cyclic AMP induce cyclic AMP phosphodiesterase, slow growth, and eventually kill wild type cells. In the resistant mutants, however, the endogenous and exogenous cyclic nucleotides appear to be completely inactive. These results indicate that an intracellular receptor for cyclic AMP, previously shown to be associated with a cyclic AMP-dependent protein kinase, mediates cyclic AMP's regulation of growth and phosphodiesterase synthesis.  相似文献   

8.
Modifications in the cyclic nucleotide systems favoring the expression of cyclic GMP effects were found to occur in the transplanted fast-growing Morris hepatoma 3924A. These included: (a) a decreased level of cyclic GMP phosphodiesterase and an increased level of cyclic AMP phosphodiesterase; (b) a disproportionately increased level of cylic GMP-dependent protein kinase relative to that of cyclic AMP-dependent protein kinase; (c) a disproportionately increased level of stimulatory modulator of cyclic AMP-dependent protein kinase relative to that of inhibitory modulator of cyclic AMP-dependent protein kinase; and (d) an increased level of phosphoprotein phosphatase.  相似文献   

9.
The effects of isoproterenol and forskolin on tension, cyclic AMP levels, and cyclic AMP dependent protein kinase activity were compared in helical strips of bovine coronary artery. Elevation of cyclic AMP and activation of the protein kinase appeared to be well correlated with relaxation of potassium-contracted arteries by isoproterenol. Forskolin, at 1 microM or higher concentrations, also markedly elevated cyclic AMP levels, activated the kinase, and relaxed the arteries. However, a lower concentration of forskolin (0.1 microM) caused significant increases in both cyclic AMP levels and cyclic AMP dependent protein kinase activity, but did not relax the muscles. Relaxation caused by isoproterenol was accompanied by an apparent translocation of cyclic AMP dependent protein kinase activity from the soluble to the particulate fraction in these preparations. A similar shift in the distribution of the kinase was caused by various concentrations of forskolin, irrespective of whether the arteries were relaxed or not. In contrast to previous results in other tissues, low concentrations of forskolin (less than or equal to 1 microM), which themselves markedly elevated cyclic AMP levels in the arteries, did not potentiate the effects of isoproterenol on cyclic AMP levels or tension in these preparations. These results suggest that either cyclic AMP is not solely responsible for the relaxation caused by these agents, or some form of functional compartmentalization of cyclic AMP and cyclic AMP dependent protein kinase exists in this tissue.  相似文献   

10.
The changes in the activities of 17 aminoacyl-tRNA synthetases induced by phosphorylation [1] were reversed by the action of cyclic AMP in preparations from both uterus and liver. Cyclic AMP also inhibited the phosphorylation of aminoacyl-tRNA synthetase protein by endogenous non-cyclic AMP-dependent protein kinase and [gamma-32P]ATP. The effect was not due to a stimulation of phosphoaminoacyl-tRNA synthetase phosphatase or to an influence of cyclic AMP on aminoacyl-tRNA synthetases. The activity of phosphoaminoacyl-tRNA synthetase phosphatase was increased by treatment with endogenous cyclic AMP-dependent protein kinase, ATP and cyclic AMP. Affinity chromatography of the 32P-labeled phosphorylated phosphosynthetase phosphatase protein followed by gel electrophoresis showed that the activated phosphatase was phosphorylated. In the uterus, the changes in 17 aminoacyl-tRNA synthetase activities observed 5 min after dibutyryl cyclic AMP administration to ovariectomized mice were similar to those observed after 17beta-oestradiol treatment, whereas in the liver the changes in these activities were the opposite to those found after treatment with 17beta-oestradiol. A mechanism for the regulation of the 17 aminoacyl-tRNA synthetase activities is proposed, which suggests that the synthetase activities inhibited (group I) or stimulated (group II) by phosphorylation with a non-cyclic AMP-dependent aminoacyl-tRNA synthetase kinase are reactivated (group I) or inhibited (group II), respectively, by the action of a cyclic AMP-dependent phosphatase kinase through the increased activity of phosphorylated phosphoaminoacyl-tRNA synthetase phosphatase.  相似文献   

11.
Divalent metals used to support phosphodiesterase (EC 3.1.4.-) activity have been found to influence the substrate and enzyme specificity of many phosphodiesterase inhibitors in studies of the hydrolysis of cyclic AMP and cyclic GMP by the calmodulin-dependent and cyclic AMP-specific phosphodiesterases from bovine heart. Many compounds displayed marked differences in substrate specificity and inhibitory potency in the presence of Mg2+, as compared with Mn2+, when studied with the unactivated form of calmodulin-dependent phosphodiesterase, while few compounds displayed differences in the presence of calmodulin. With a single divalent metal, marked differences in inhibitory potency and substrate specificity were also observed in the absence or presence of calmodulin suggesting that alterations in calmodulin and/or Ca2+ levels may greatly affect the response to phosphodiesterase inhibitors. Divalent metals did not alter the effects of inhibitors on the hydrolysis of cyclic AMP by the cyclic AMP-specific phosphodiesterase, however divalent metals would probably indirectly influence the relative cellular level of cyclic AMP hydrolyzed by this enzyme, and therefore the effects of inhibitors, through metal effects on the calmodulin-dependent phosphodiesterase. No correlation was found between the inhibitory activity of the compounds, many of which were cyclic nucleotide analogs, and their ability to activate cyclic AMP-dependent or cyclic GMP-dependent protein kinases or to affect cyclic AMP-dependent protein kinase activity by displacing bound cyclic AMP.  相似文献   

12.
Modifications in the cyclic nucleotide systems favoring the expression of cyclic GMP effects were found to occur in the transplanted fast-growing Morris hepatoma 3924A. These included: (a) a decreased level of cyclic GMP phosphodiesterase and an increased level of cyclic AMP phosphodiesterase; (b) a disproportionately increased level of cyclic GMP-dependent protein kinase relative to that of cyclic AMP-dependent protein kinase; (c) a disproportionately increased level of stimulatory modulator of cyclic GMP-dependent protein kinase relative to that of inhibitory modulator of cyclic AMP-dependent protein kinase; and (d) an increased level of phosphoprotein phosphatase.  相似文献   

13.
Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes   总被引:16,自引:0,他引:16  
We have studied the compartmentation of cyclic AMP action in purified ventricular cardiomyocytes prepared by collagenase perfusion of adult rabbit hearts. Incubation of purified adult myocytes with 1 microM isoproterenol causes rapid accumulation of intracellular cyclic AMP in both soluble (2.3 leads to 7.7 pmol/ mg of protein) and particulate (3.0 leads to 9.2) fractions of cell homogenates (3000 X g for 5 min), increases in the total activity and activity ratio of soluble cyclic AMP-dependent protein kinase (0.21 leads to 0.66), a decrease in protein kinase activity remaining in the particulate fraction (47 leads to 30%), and an increase in the activity ratio of glycogen phosphorylase (0.15 leads to 0.47). Incubation of myocytes with 10 microM prostaglandin E1 (PGE1) leads to a comparable increase in soluble cyclic AMP (2.3 leads to 5.8 pmol/mg of protein) and activation of soluble cyclic AMP-dependent protein kinase (0.21 leads to 0.39) but does not result in any change in cAMP or protein kinase in the particulate fraction and fails to cause an activation of glycogen phosphorylase. PGE1 does not inhibit the effects of isoproterenol; when myocytes are incubated with both isoproterenol and PGE1, the accumulation of cyclic AMP, activation of cAMP-dependent protein kinase and phosphorylase b leads to a conversion are equal to that achieved with isoproterenol alone. Perturbation of cellular calcium using the ionophore A23187, verapamil, or high or low extracellular calcium did not alter the ability of isoproterenol to cause activation of particulate cAMP-dependent protein kinase or influence the inability of PGE1 to do so. Activation of adenylate cyclase by forskolin (30 microM) caused immediate activation of both soluble and particulate cAMP-dependent protein kinase leading to rapid activation of phosphorylase. We conclude that the hormonally specific compartmentation of cyclic AMP and cAMP-dependent protein kinase that occurs in intact heart (Hayes, J. S., Brunton, L. L., Brown, J. H., Reese, J. B., and Mayer, S. E. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 1570-1574) is not explained on the basis of cellular heterogeneity but has a subcellular basis within the cardiomyocyte.  相似文献   

14.
DEAE-cellulose chromatography of the 20,000g supernatant fraction of homogenates of C-1300 murine neuroblastoma (clone N2a) yields one major and two minor peaks of cyclic AMP-dependent protein kinase activity. Assessment of the endogenous activation state of the enzyme(s) reveals that the enzyme is fully activated by the treatment of whole cells with adenosine (10 μM) in the presence of the phosphodiesterase inhibitor Ro 20 1724 (0.7 mM). This treatment produces a large elevation in the cyclic AMP content of the cells. The treatment of whole cells with adenosine alone (1–100 μM) or Ro 20 1724 alone (0.1–0.7 mM) produces minimal elevations in cyclic AMP but nevertheless causes significant activations of cyclic AMP-dependent protein kinase. The autophosphorylation of whole homogenates of treated and untreated cells was studied using [γ-32P] ATP, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Treatments which activate cyclic AMP-dependent protein kinase selectively stimulate the incorporation of 32P into several proteins. This stimulation is most prominent in the 15,000-dalton protein band. The addition of cyclic AMP to phosphorylation reactions containing homogenate of untreated cells stimulates the phosphorylation of the same protein bands. These results indicate that adenosine may have regulatory functions through its effect on the cyclic AMP: cyclic AMP-dependent protein kinase system.  相似文献   

15.
A novel variant of S49 mouse lymphoma cells is described which is resistant to growth arrest and cytolysis by dibutyryl cyclic AMP but, in contrast to previously described variants, has normal cyclic AMP-dependent protein kinase. The variant is also resistant to N6-monobutyryl cAMP but is sensitive to killing by 8-bromo cAMP and cholera toxin. Extracts of the variant appear to contain wild type levels of both O2'-butyrylesterase and cyclic AMP phosphodiesterase activities. Accumulation of exogenous [3H]dibutyryl cyclic AMP is reduced in the variant suggesting a defect in either uptake or secretion of the analog or its metabolic products. Accumulation of cyclic AMP in variant cells after stimulation of adenylate cyclase with either isoproterenol or cholera toxin is also reduced compared with wild type cells, although cyclase activity of membranes prepared from the variant cells is normal. Extracellular accumulation of cyclic AMP after stimulation of variant cells with isoproterenol is greater than that found with wild type cells. It is concluded that the variant has an alteration in its cyclic AMP secretion mechanism resulting in more efficient extrusion of cyclic AMP than in wild type cells.  相似文献   

16.
To examine whether or not the activation of cyclic AMP-dependent protein kinase is coupled to the exocytosis of amylase from rat parotid cells, the effect of protein kinase inhibitors on amylase release and protein phosphorylation was studied. A membrane-permeable inhibitor of cyclic AMP-dependent protein kinase, N-[2-(methylamino)ethyl]-5-isoquinolinesulphonamide (H-8), and peptide fragments of the heat-stable protein kinase inhibitor [PKI-(5-24)-peptide and PKI-(14-24)-amide] strongly inhibited cyclic AMP-dependent protein kinase activity in the cell homogenate. However, H-8 had no inhibitory effect on amylase release from either intact or saponin-permeabilized parotid cells stimulated by isoproterenol or cyclic AMP. Moreover, PKI-(5-24)-peptide and PKI-(14-24)-amide did not inhibit cyclic AMP-evoked amylase release from saponin-permeabilized cells, whereas cyclic AMP-dependent phosphorylations of 21 and 26 kDa proteins in intact or permeabilized cells were markedly inhibited by these inhibitors. These results suggest that cyclic AMP-dependent protein phosphorylation is not directly involved in the exocytosis of amylase regulated by cyclic AMP.  相似文献   

17.
Phosphorylation of phospholamban and development of reticular Ca2+ transport were studied in crude membrane preparations of embryonic, newborn and adult chick heart. Maximal phosphorylation of phospholamban by added catalytic subunit of cyclic AMP-dependent protein kinase increases from embryonic day 4-15. It decreases with further development. In the same membrane preparations active Ca2+-uptake into vesicles of sarcoplasmic reticulum rises from day 4-7 and decreases then slightly until day 20. A several-fold increase in Ca2+-transport activity occurs at the time of hatching. The data indicate separate genetic control for synthesis of phospholamban and sarcoplasmic reticulum Ca2+-ATPase.  相似文献   

18.
Diaphragm extracts were subjected to electrophoresis on polyacrylamide gels to separate the different molecular species of th cyclic AMP-dependent protein kinase. Using cyclic [3H]AMP, three peaks of binding activity were observed. The peak closest to the origin (peak I) was associated with cyclic AMP-dependent protein kinase activity and was abolished by incubation of the extracts with cyclic AMP prior to electrophoresis. The peak farthest from the origin (peak III) was devoid of kinase activity and was increased by incubation of extracts with cyclic AMP before electrophoresis; furthermore, when extracts were incubated with cyclic [3H]AMP before electrophoresis, essentially all the radioactivity appeared in peak III. Peak II, in an intermediate position, was also abolished by preincubation of the extracts with cyclic AMP and both its binding capacity and cyclic AMP-dependent protein kinase activity were lower than in Peak I. A peak of cyclic AMP-independent protein kinase (peak 0) that migrated more slowly than peak II was also detected. From these and other data it is concluded that peaks I and II are cyclic AMP-dependent protein kinase and that peak III is the dissociated regulatory subunit, respectively. Peak 0 is cyclic AMP-independent protein kinase together with free catalytic subunits from cyclic AMP-dependent protein kinase. Incubation of rat diaphragms with epinephrine resulted in dose- and time-dependent decrease in peak I and increase in peak III. These changes correlated with the decrease of cyclic AMP-dependent protein kinase associated with peak I. No changes in Peak II were observed with epinephrine, but an increased peak 0 was noted. Changes in peak I and peak III correlated with the modification of glycogen synthase and glycogen phosphorylase activities. No regulatory subunits (peak III) were detected as phosphorylated forms in diaphragms previously equilibrated with 32P. Treatment with epinephrine produce no noticeable phosphorylation of these regulatory subunits.  相似文献   

19.
The beta-adrenergic catecholamine isoproterenol produces a large, rapid, but often a transient, elevation in cellular content of cyclic AMP. We have used the S49 mouse lymphoma cell line, in which genetic variants with specific defects in the pathway of cyclic AMP generation and function have been isolated, to study the increase and subsequent decrease in cyclic AMP levels (termed refractoriness) following incubation of cells with isoproterenol. In wild type S49 cells, isoproterenol produces a peak response in the cellular content of cyclic AMP within 30 min, but the cyclic AMP level falls rapidly thereafter, approaching basal levels by 6 h. Neither inactivation of the drug nor secretion of a nonspecific inhibitor of adenylate cyclase appears to account for the refractoriness. Because isoproterenol refractory cells can still be stimulated by cholera toxin, refractoriness to isoproterenol does not represent a generalized decrease in cellular cyclic AMP response. Particulate preparations from refractory cells have a selective loss of isoproterenol-responsive adenylate cyclase activity, but their activation constants and stereoselectivity for (-)- and (+)-isoproterenol are unaltered. In addition, refractory cells have decreased specific binding of the beta-adrenergic antagonist [125I]iodohydroxybenzylpindolol. This decrease appears to represent a reduction in the number, but not the affinity, of beta-adrenergic receptor sites. Similar studies in an S49 clone that lacks the enzyme cyclic AMP-dependent protein kinase yield essentially identical findings. Because kinase-deficient cells do not induce the cyclic AMP-degrading enzyme phosphodiesterase after the cellular content of cyclic AMP is increased, induced of phosphodiesterase cannot account for refractoriness to isoproterenol. Cyclic AMP-dependent protein kinase does not appear to be required for either the decrease in beta-adrenergic receptors and isoproterenol-responsive adenylate cyclase, nor does it appear to be required for the development of refractoriness to isoproterenol. In contrast, an S49 clone lacking hormone-responsive adenylate cyclase activity but retaining beta-adrenergic receptors does not appear to lose receptors after being incubated with isoproterenol, either alone or together with dibutyryl cyclic AMP. Therefore, in this clone, receptor occupancy alone or in combination with elevated cyclic AMP levels is insufficient to cause refractoriness. Refractoriness thus appears to require intact adenylate cyclase. This suggests that adenylate cyclase may exert regulatory controls on beta-adrenergic receptors in addition to generation of cyclic AMP.  相似文献   

20.
The roles of cyclic AMP, cyclic AMP-dependent protein kinase and the phosphorylation of specific proteins in the regulation of cardiac contractility are briefly reviewed. Criteria for determining whether changes in cyclic AMP and protein phosphorylation are involved in a physiological response are discussed. Although cyclic AMP-dependent phosphorylation of the voltage-operated Ca2– channel, phospholamban, troponin-I and C-protein have all been implicated in the response of the heart to inotropic agents which elevate cyclic AMP, none of these phosphorylations satisfy all of the criteria completely. Evidence is presented that there are compartments of cyclic AMP in heart which are coupled to different functional responses.Abbreviations cAMP 3,5 cyclic adenosine monophosphate - PDE cyclic nucleotide phosphodiesterase - cA-PrK cAMP-dependent protein kinase - SR sarcoplasmic reticulum - PGE1 prostaglandin E1 - Tn-I troponin I  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号