首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Thermal Engineering》2007,27(13):2195-2199
In this paper, a solid adsorption cooling system with silica gel as the adsorbent and water as the adsorbate was experimentally studied. To reduce the manufacturing costs and simplify the construction of the adsorption chiller, a vacuum tank was designed to contain the adsorption bed and evaporator/condenser. Flat-tube type heat exchangers were used for adsorption beds in order to increase the heat transfer area and improve the heat transfer ability between the adsorbent and heat exchanger fins. Under the standard test conditions of 80 °C hot water, 30 °C cooling water, and 14 °C chilled water inlet temperatures, a cooling power of 4.3 kW and a coefficient of performance (COP) for cooling of 0.45 can be achieved. It has provided a specific cooling power (SCP) of about 176 W/(kg adsorbent). With lower hot water flow rates, a higher COP of 0.53 can be achieved.  相似文献   

2.
《Applied Thermal Engineering》2007,27(14-15):2426-2434
This paper presents measurements and predictions of a heat pipe-equipped heat exchanger with two filling ratios of R134a, 19% and 59%. The length of the heat pipe, or rather thermosyphon, is long (1.5 m) as compared to its diameter (16 mm). The airflow rate varied from 0.4 to 2.0 kg/s. The temperatures at the evaporator side of the heat pipe varied from 40 to 70 °C and at the condenser part from 20 to 50 °C. The measured performance of the heat pipe has been compared with predictions of two pool boiling models and two filmwise condensation models. A good agreement is found. This study demonstrates that a heat pipe equipped heat exchanger is a good alternative for air–air exchangers in process conditions when air–water cooling is impossible, typically in warmer countries.  相似文献   

3.
Heat transfer and pressure drop characteristics of an absorbent salt solution in a commercial plate heat exchanger serving as a solution sub-cooler in the high loop of triple-effect absorption refrigeration cycle was investigated. The main objectives of this research were to establish the correlation equations to predict the heat transfer and pressure drop and to analyze and optimize the operating parameters for use in the design of absorption systems.In order to conduct above studies, a single-pass cross-corrugated ALFA-LAVAL plate heat exchanger, Model PO1-VG, with capacity of 14,650 W (50,000 Btu/h) was used. In order to evaluate the performance, hot solution inlet temperatures from 55 °C (130 °F) to 77 °C (170 °F), and inlet temperature differences from 14 °C (25 °F) to 20 °C (35 °F) were used. The cold side of the heat exchanger was operated to match the equal heat capacity rate of hot side.Based on the empirical models proposed in the literature, a program was developed and experimental data were curve fitted. From the best-fitted curves, the power-law equations for heat transfer and pressure losses were established and the performance was evaluated.In the hot salt solution side, the Reynolds number was varied from 250 to 1100 and the resulting Nusselt number varied from 7.4 to 15.8. The measured overall heat transfer coefficient Uoverall varied from 970 W/m2 °C (170 Btu/h ft2 °F) to 2270 W/m2 °C (400 Btu/h ft2 °F) and the Fanning friction factor in the absorbent side of the heat exchanger varied from 5.7 to 7.6. The correlation equations developed to predict the heat transfer and friction factor perfectly agree with the experimental results. Those equations can be used to predict the performance of any solution with Prandtl numbers between 82 and 174, for heat exchangers with similar geometry.  相似文献   

4.
A direct-contact compact heat exchanger to enhance cooling of hot water, has been manufactured and tested experimentally. Hereby hot water is dispersed into a cooler liquid gallium bath in the form of small water bubbles emanating from 48 holes with 3 mm diameter each, drilled on four horizontal bubbles distribution tubes. Heat transfer limitations posed by gallium's low specific heat have been circumvented by imbedding cooling water tubes within the gallium. Thereby it was possible to maintain gallium at almost 30 °C during water bubbling; slightly above gallium's freezing point. Temperature reduction by about 23 °C was possible for hot water flow with initial temperature of about 60 °C and flow rate of 11.3 g/s when bubbled through such gallium bath that has temperature of about 30 °C and thickness of about only 18 mm. To realize such temperature drop for water using equivalent shell-tube heat exchangers of conventional kinds with 3 mm diameter tubing, a tube length in the range of 70 to 80 cm would be required. Theoretical considerations and empirical correlations dedicated to solid sphere calculations have been used to predict motion and heat transfer events for water bubbles moving through isothermal gallium bath. The computations were extended to include the experimental temperature conditions tested. Computations agree very well with experimental results.  相似文献   

5.
In this study, an innovative, evaporative condenser for residential refrigerator was introduced. A vapor compression cycle incorporating the proposed evaporative condenser was tested to evaluate the cycle performance. To allow for evaporative cooling, sheets of cloth were wrapped around condenser to suck the water from a water basin by capillary effect. The thermal properties at the different points of the refrigeration cycle were measured for typical operating conditions. The experimental results showed that the condenser temperature increases 0.45 °C for each degree increase in evaporator temperature when the air velocity is 2.5 m/s, and the ambient condition is 29 °C and the relative humidity is 37.5%. Meanwhile, the condenser temperature increase is 0.88 °C in the case of air velocity 1.1 m/s and ambient conditions of 31 °C and relative humidity of 47.1%. A theoretical model for the evaporative condenser was developed, and validated by experimental results. The theoretical model showed that the evaporative condenser can operate at a condensing temperature of 20 C lower than that of the air-cooled condenser for heat flux of 150 W/m2, and at air velocity 3 m/s. The effect of the different parameters on the condenser temperature was studied too.  相似文献   

6.
Low depth geothermal heat exchangers can be efficiently used as a heat sink for building energy produced during summer. If annual average ambient temperatures are low enough, direct cooling of a building is possible. Alternatively the heat exchangers can replace cooling towers in combination with active cooling systems. In the current work, the performance of vertical and horizontal geothermal heat exchangers implemented in two office building climatisation projects is evaluated.A main result of the performance analysis is that the ground coupled heat exchangers have good coefficients of performance ranging from 13 to 20 as average annual ratios of cold produced to electricity used. Best performance is reached, if the ground cooling system is used to cool down high temperature ambient air. The maximum heat dissipation per meter of ground heat exchanger measured was lower than planned and varied between 8 W m?1 for the low depth horizontal heat exchangers up to 25 W m?1 for the vertical heat exchangers.The experimental results were used to validate a numerical simulation model, which was then used to study the influence of soil parameters and inlet temperatures to the ground heat exchangers. The power dissipation varies by ±30% depending on the soil conductivity. The heat conductivity of vertical tube filling material influences performance by another ±30% for different materials. Depending on the inlet temperature level to the ground heat exchanger, the dissipated power increases from 2 W m?1 for direct cooling applications at 20 °C up to 52 W m?1 for cooling tower substitutions at 40 °C. This directly influences the cooling costs, which vary between 0.12 and 2.8€ kW h?1.As a result of the work, planning and operation recommendations for the optimal choice of ground coupled heat exchangers for office building cooling can be given.  相似文献   

7.
In this paper we proposed and tested a new methodology of studying the kinetics of water vapour sorption/desorption under operating conditions typical for isobaric stages of sorption heat pumps. The measurements have been carried out on pellets of composite sorbent SWS-1L (CaCl2 in silica KSK) placed on a metal plate. Temperature of the plate was changed as it takes place in real sorption heat pumps, while the vapour pressure over the sorbent was maintained almost constant (saturation pressures corresponding to the evaporator temperature of 5 °C and 10 °C and the condenser temperature of 30 °C and 35 °C). Near-exponential behaviour of water uptake on time was found for most of the experimental runs. Characteristic time τ of isobaric adsorption (desorption) was measured for one layer of loose grains having a size between 1.4 mm and 1.6 mm for different heating/cooling scenarios and boundary conditions of an adsorption heat pump. Maximum specific power estimated from the τ-values can exceed 1.0 kW/kg of dry adsorbent, that gives proof to the idea of compact adsorption units for energy transformation with loose SWS grains.  相似文献   

8.
For applications such as cooling of electronic devices, it is a common practice to sandwich the thermoelectric module between an integrated chip and a heat exchanger, with the cold-side of the module attached to the chip. This configuration results thermal contact resistances in series between the chip, module, and heat exchanger. In this paper, an appraisal of thermal augmentation of thermoelectric module using nanofluid-based heat exchanger is presented. The system under consideration uses commercially available thermoelectric module, 27 nm Al2O3–H2O nanofluid, and a heat source to replicate the chip. The volume fraction of nanofluid is varied between 0% and 2%. At optimum input current conditions, experimental simulations were performed to measure the transient and steady-state thermal response of the module to imposed isoflux conditions. Data collected from the nanofluid-based exchanger is compared with that of deionized water.Results show that there exist a lag-time in thermal response between the module and the heat exchanger. This is attributed to thermal contact resistance between the two components. A comparison of nanofluid and deionized water data reveals that the temperature difference between the hot- and cold-side, ΔT = Th ? Tc  0, is almost zero for nanofluid whereas ΔT > 0 for water. When ΔT  0, the contribution of Fourier effect to the overall heating is approximately zero hence enhancing the module cooling capacity. Experimental evidence further shows that temperature gradient across the thermal paste that bonds the chip and heat exchanger is much lower for the nanofluid than for deionized water. Low temperature gradient results in low resistance to the flow of heat across the thermal paste. The average thermal contact resistance, R = ΔT/Q, is 0.18 and 0.12 °C/W, respectively for the deionized water and nanofluid. For the range of optimum current, 1.2 ? current ? 4.1 A, considered in this study, the COP ranges between 1.96 and 0.68.  相似文献   

9.
A continuous heat recovery adsorption refrigerator using activated carbon-methanol has been developed. In this system, the heat source to drive the adsorption system can be controlled at a temperature from 60 °C to 110 °C, and the evaporating temperature can also be controlled at any requested value from 0 °C to 15 °C. To realize the operation performance of the system, many sensors of temperature, pressure and flow rate are installed in the adsorbers, the condenser and the evaporator. A lot of experiments have been completed in different operation conditions. Thus, by means of the experimental data, influences of the operating parameters, such as heat source temperature, evaporating temperature, cooling water temperature, cycle time and flow rate of throttling valve and so on, on p-t-x diagram of the cycle, specific cooling power (SCP) and coefficient of performance (COP) have been asserted. And causes of the influence are also analyzed. A series of conclusions are obtained.  相似文献   

10.
《Applied Thermal Engineering》2007,27(11-12):1806-1816
In this study, the heat transfer enhancement and pressure drop values of seven different fin angles with plain fin-tube heat exchangers were investigated. The numerical simulation of the fin-tube heat exchanger was performed by using a three dimensional (3-D) numerical computation technique. Therefore, a CFD computer code, the FLUENT was used to solve the equation for the heat transfer and pressure drop analyses in the fin-tube heat exchanger. The model drawing was created and meshed by using GAMBIT software. The heat transfer and pressure drop values of the vertical fin angle (θ = 0°) were provided to compare with variable inclined fin angles (θ = 5°, 10°, 15°, 20°, 25°, 30°). The heat transfer values were normalized to compare all cases. For inclined fin angle θ = 30°, which is the optimum angle, the maximum heat transfer enhancement per segment was obtained 1.42 W (the normalized value 105.24%), the maximum loss power associated with pressure drop per segment was only 0.54 mW.  相似文献   

11.
The average heat transfer rates of gravitational and magnetic convection of water heated from below and cooled from above are measured for two cases of cold wall temperature θc at 10 °C and 30 °C. The height of the cylindrical enclosure is 2 mm with 40 mm in diameter. The magnetic field is imposed in a vertical direction to increase or decrease 29% of the gravitational acceleration in a bore space of a super-conducting magnet of 10 T at the solenoid center. The group of data at θc = 30 °C gives a better agreement with the classical heat transfer rate of Silveston than that at θc = 10 °C. This is probably due to the almost constant value in the volumetric magnetic susceptibility of water at about 10 °C.  相似文献   

12.
Experiments were conducted to investigate the heat transfer and CO/NOX emissions of a premixed LPG/air circular flame jet impinging upwards normally to a flat rectangular plate. Temperatures of the impingement plate were controlled by cooling water at 38 °C, 58 °C and 78 °C which was circulating at its back in order to create different plate temperatures. Under each plate temperature, the effects of Reynolds number (Re), equivalence ratio (Ф) and nozzle-to-plate distance (H) on the heat transfer and CO/NOX emissions were examined. The Re was selected to be 500, 1000 and 1500 to ensure laminar flame jets. The values of Ф were chosen to cover fuel-lean, stoichiometric and fuel-rich conditions. The H varied from 3d to 7d with an interval of 1d.The flame-side temperature of the impingement plate is enhanced when the cooling water temperature increases, but the temperature difference across the impingement plate is reduced. Heat transfer from the flame to the plate is suppressed at higher cooling water temperature. The heat transfer rate is the highest when the cooling water temperature is at 38 °C and the lowest heat flux is obtained at 78 °C. At the highest cooling water temperature of 78 °C, the CO emission is reduced whereas the NOX emission is enhanced. However, this trend is reversed at the lowest cooling water temperature of 38 °C.  相似文献   

13.
The present study aims to explore experimentally the influence of elevated inlet fluid temperature on the turbulent forced convective heat transfer effectiveness of using alumina–water nanofluid over pure water in an iso-flux heated horizontal circular tube at a fixed heating power. A copper circular pipe of inner diameter 3.4 mm was used in the forced convection experiments undertaken for the pertinent parameters in the following ranges: the inlet fluid temperature, Tin = 25 °C, 37 °C and 50 °C; the Reynolds number, Rebf = 3000–13,000; the mass fraction of the alumina nanoparticles in the water-based nanofluid formulated, ωnp = 0, 2, 5, and 10 wt.%; and the heating flux, qo = 57.8–63.1 kW/m2. The experimental results clearly indicate that the turbulent forced convection heat transfer effectiveness of the alumina–water nanofluid over that of the pure water can be further uplifted by elevating its inlet temperature entering the circular tube well above the ambient, thereby manifesting its potential as an effective warm functional coolant. Specifically, an increase in the averaged heat transfer enhancement of more than 44% arises for the nanofluid of ωnp = 2 wt.% as the inlet fluid temperature is increased from 25 °C to 50 °C.  相似文献   

14.
It would be misleading to consider only cost aspect of the design of a heat exchanger. High maintenance costs increase total cost during the services life of heat exchanger. Therefore exergy analysis and energy saving are very important parameters in the heat exchanger design. In this study, the effects of surface geometries of three different type heat exchangers called as PHEflat (Flat plate heat exchanger), PHEcorrugated (Corrugated plate heat exchanger) and PHEasteriks (Asterisk plate heat exchanger) on heat transfer, friction factor and exergy loss were investigated experimentally. The experiments were carried out for a heat exchanger with single pass under condition of parallel and counter flow. In this study, experiments were conducted for laminar flow conditions. Reynolds number and Prandtl number were in the range of 50 ? Re ? 1000 and 3 ? Pr ? 7, respectively. Heat transfer, friction factor and exergy loss correlations were obtained according to the experimental results.  相似文献   

15.
This paper presents an experimental investigation of a direct expansion air conditioner working with R407C as an R22 alternative. Experiments are conducted on a vapor compression refrigeration system using air as a secondary fluid through both the evaporator and the condenser. The influences of the evaporator air inlet temperature (20–32 °C), the evaporator air flow rate (250–700 m3/h) and the evaporator air humidity ratio (9 and 14.5 gwv/kga) at the condenser air temperature and volume flow rate of 35 °C and 850 m3/h, respectively on the system performance are investigated. Experimental results revealed that the evaporator air inlet temperature has pronounced effects on the air exit temperatures, pressures of the evaporator and the condenser, cooling capacity, condenser heat load, compressor pressure ratio and the COP of both refrigerants at humidity ratios of 9 and 14.5 gwv/kga. Significant effects of the evaporator air flow rate are also gathered on the preceding parameters at the same values of mentioned-humidity ratios. The best performance, in terms of operating parameters as well as COP, can be accomplished using R22 compared to R407C. The inlet humidity ratio affects dramatically the performance of vapor compression system using R22 and R407C. The raising up humidity ratio from 9 to 14.5 gwv/kga leads to an augmentation in the average cooling capacity by 29.4% and 38.5% and an enhancement in the average COP by 30% and 24.1% for R22 and R407C, respectively.  相似文献   

16.
The aim of the current paper is to propose a study of a novel solar adsorptive cooling system, using activated carbon–ammonia pair, coupled with a parabolic trough collector (PTC) and a water-stainless steel heat pipe. A theoretical model, based on the thermodynamics of the adsorption process, heat and mass transfer within the porous medium and energy balance in the hybrid system components, is developed and a simulation code, written in FORTRAN, is carried out. This model, which has been validated by experimentation results, computes the temperature, pressure and adsorbed mass inside the adsorbent bed. The performance is assessed in terms of specific cooling power (SCP) and solar coefficient of performance (COPs). Furthermore, the effect of some important parameters on the system performance is discussed, and an optimization of these parameters is given.The simulation results have shown that there exists, for each aperture width value of the collector (W), an optimum external radius of adsorbent bed (R2). Under the operating and design conditions of evaporation temperature Tev = 0 °C, condensing temperature Tcon = 28 °C, adsorption temperature Tads = 24 °C, W = 0.70 m, R2 = 0.145 m and reactor length of 0.5 m, an optimal corresponding COPs is found to be of the order of 0.18.  相似文献   

17.
The paper presents the results of experimental investigation of heat transfer and hydrodynamics during condensation of moving steam in a narrow channel of square cross-section 2 mm × 2 mm. The channel had a serpentine shape, the channel length was 660 mm. An experimental cell simulated conditions of heat transfer in the condenser of loop heat pipes. The steam velocity at the channel inlet ranged from 13 to 52 m/s, the pressure was 1 atm. The temperature of the cooling water varied from 70 to 95 °C. The annular flow pattern was noted in the whole range of the regime parameters. There was a clear boundary between the condensation zone and the zone occupied by the condensed phase downstream. Temperature has measured along the channel, and the heat-transfer coefficients have been determined. The coefficient values varied from 10,000 to 55,000 W/K m2 depending on the steam velocity at the channel inlet and the cooling temperature. The efficiency of the condenser – heat exchanger has been investigated.  相似文献   

18.
This paper focuses on evaluation of the optimum cooling water temperature during condensation of saturated water vapor within a shell and tube condenser, through minimization of exergy destruction. First, the relevant exergy destruction is mathematically derived and expressed as a function of operating temperatures and mass flow rates of both vapor and coolant. The optimization problem is defined subject to condensation of the entire vapor mass flow and it is solved based on the sequential quadratic programming (SQP) method. The optimization results are obtained at two different condensation temperatures of 46 °C and 54 °C for an industrial condenser. As the upstream steam mass flow rates increase, the optimal inlet cooling water temperature and exergy efficiency decrease, whereas exergy destruction increases. However, the results are higher for optimum values at a condensation temperature of 54 °C, compared to those when the condensation temperature is 46 °C. For example, when the steam mass flow rate is 1 kg/s and the condensation temperature increases from 46 °C to 54 °C, the optimal upstream coolant temperature increases from 16.78 °C to 25.17 °C. Also, assuming an ambient temperature of 15 °C, the exergy destruction decreases from 172.5 kW to 164.6 kW. A linear dependence of exergy efficiency on dimensionless temperature is described in terms of the ratio of the temperature difference between the inlet cooling water and the environment, to the temperature difference between condensation and environment.  相似文献   

19.
A small scale steam jet ejector experimental setup was designed and manufactured. This ejector setup consists of an open loop configuration and the boiler operate in the temperature range of Tb = 85–140 °C. The typical evaporator liquid temperatures range from Te = 5 °C to 10 °C while the typical water-cooled condenser pressure ranges from Pc = 1.70 kPa to 5.63 kPa (Tc = 15–35 °C). The boiler is powered by two 4 kW electric elements while a 3 kW electric element simulates the cooling load in the evaporator. The electric elements are controlled by means of variacs.Primary nozzles with throat diameters of 2.5 mm, 3.0 mm and 3.5 mm are tested while the secondary ejector throat diameter remains unchanged at 18 mm. These primary nozzles allow the boiler to operate in the temperature range of Tb = 85–110 °C. When the nozzle throat diameter is increased, the minimum boiler temperature decreases. A primary nozzle with a 3.5 mm throat diameter was tested at a boiler temperature of Tb = 95 °C, an evaporator temperature of Te = 10 °C and a critical condenser pressure of Pcrit = 2.67 kPa (22.6 °C). The system's COP is 0.253.In a case study the experimental data of a solar powered steam jet ejector air conditioner is investigated. Solar powered steam ejector air conditioning systems are technical and economical viable when compared to conventional vapour compression air conditioners. Such a system can either utilise flat plate or evacuated tube solar thermal collectors depending on the type of solar energy available.  相似文献   

20.
《Applied Thermal Engineering》2007,27(5-6):988-993
A critical cycle heat pump with HFC125 was studied experimentally. The experimental result indicates that the heat pump with HFC125 can use the general components of the conventional heat pump well. Hot water with wide-range temperature can be conveniently got by the critical heat pump system through water flow control. The COPh of the critical cycle drops a little when the temperature of outlet water rises from 60 °C to 75 °C. And adding heat recovering exchanger cannot improve the performance of the cycle, but can reduce the working pressure of the cycle. Comparing with the CO2 trans-critical heat pump, HFC125 critical heat pump has a better performance of refrigeration, lower working pressure, which is especially suitable for dual-function of supplying hot water and refrigeration in the civil and industrial buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号