首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Anhydrous polymer electrolytes based on azole functional methacrylates and methacrylamides have been produced for use in proton exchange membrane fuel cells (PEMFCs). Poly(methacryloyl chloride) (PMAC) was prepared first by free‐radical polymerization of methacryloyl chloride, followed by side chain functionalization with 5‐aminotetrazole (ATet), 3‐amino‐1,2,4‐triazole (ATri) and 1H‐1,2,4‐triazole (Tri). Finally, the obtained polymers were doped with triflic acid (TA) at stoichometric ratios of 1.0, 2.0 and 4.0 with respect to azole units, and the anhydrous polymer electrolytes were obtained. The membranes were characterized by FT‐IR, 13C‐NMR, and elemental analysis. Thermal behaviour of polymers was explored by TGA and DSC. The samples were thermally stable up to approximately 200 oC. Proton conductivity was measured by impedance spectroscopy. Trifilic acid doped poly(methacryloyl aminotetrazole) (PMAATet‐(TA)4), poly(methacryloyl‐3‐amino‐1,2,4‐triazole) (PMA‐Tri‐(TA)4), and poly(methacryloyl‐1,2,4‐triazole) (PMA‐ATri‐(TA)4) showed maximum proton conductivities of 0.01 Scm?1, 0.02 Scm?1 and 8.7x10?4 Scm?1, respectively, at 150°C and anhydrous conditions. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39915.  相似文献   

2.
Polymer electrolyte membranes composing of corn starch as host polymer, lithium perchlorate (LiClO4) as salt, and barium titanate (BaTiO3) as composite filler are prepared using solution casting technique. Ionic conductivity is enhanced on addition of BaTiO3 by reducing the crystallinity and increasing the amorphous phase content of the polymer electrolyte. The highest ionic conductivity of 1.28 × 10?2 S cm?1 is obtained for 10 wt % BaTiO3 filler in corn starch‐LiClO4 polymer electrolytes at 75°C. Glass transition temperature (Tg) of polymer electrolytes decreases as the amount of BaTiO3 filler is increased, as observed in differential scanning calorimetry analysis. Scanning electron microscopy and thermogravimetric analysis are employed to characterize surface morphological and thermal properties of BaTiO3‐based composite polymer electrolytes. The electrochemical properties of the electric double‐layer capacitor fabricating using the highest ionic conductivity polymer electrolytes is investigated using cyclic voltammetry and charge‐discharge analysis. The discharge capacitance obtained is 16.22 F g?1. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43275.  相似文献   

3.
Poly(2,2′‐imidazole‐5,5′‐bibenzimidazole) (PBI‐imi) was synthesized via the polycondensation between 3,3′,4,4′‐tetraaminobiphenyl and 4,5‐imidazole‐dicarboxylic acid. Effects of the reaction conditions on the intrinsic viscosity of the synthesized polymers were studied. The results show that the molecular weight of the polymers increases with increasing monomer concentration and reaction time, and then levels off. With higher reaction temperature, the molecular weight of the polymer is higher. With the additional imidazole group in the backbone, PBI‐imi shows improved phosphoric acid doping ability, as well as a little higher proton conductivity when compared with widely used poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] (PBI‐ph).Whereas, PBI‐imi and PBI‐ph have the similar chemical oxidation stability. PBI‐imi/3.0 H3PO4 composite membranes exhibit a proton conductivity as high as 10–4 S cm–1 at 150 °C under anhydrous condition. The temperature dependence of proton conductivity of acid doped PBI‐imi can be modeled by an Arrhenius equation.  相似文献   

4.
A series of novel composite methanol‐blocking polymer electrolyte membranes based on sulfonated polyimide (SPI) and aminopropyltriethoxysilane (APTES) doping with sulfonated mesoporous silica (S‐mSiO2) were prepared by the casting procedure. The microstructure and properties of the resulting hybrid membranes were extensively characterized. The crosslinking networks of amino silica phase together with sulfonated mesoporous silica improved the thermal stability of the hybrid membranes to a certain extent in the second decomposition temperature (250–400°C). The composite membranes doping with sulfonated mesoporous silica (SPI/APTES/S‐mSiO2) displayed superior comprehensive performance to the SPI and SPI/APTES membranes, in which the homogeneously embedded S‐mSiO2 provided new pathways for proton conduction, rendered more tortuous pathways as well as greater resistance for methanol crossover. The hybrid membrane with 3 wt % S‐mSiO2 into SPI/APTES‐4 (SPI/A‐4) exhibited the methanol permeability of 4.68 × 10?6 cm2 s?1at 25°C and proton conductivity of 0.184 S cm?1 at 80°C and 100%RH, while SPI/A‐4 membrane had the methanol permeability of 5.16 × 10?6 cm2 s?1 at 25°C and proton conductivity of 0.172 S cm?1 at 80°C and 100%RH and Nafion 117 exhibited the values of 8.80 × 10?6 cm2 s?1 and 0.176 S cm?1 in the same test conditions, respectively. The hybrid membranes were stable up to about 80°C and demonstrated a higher ratio of proton conductivity to methanol permeability than that of Nafion117. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Simultaneously improving the proton conductivity and mechanical properties of a polymer electrolyte membrane is a considerable challenge in commercializing proton exchange membrane fuel cells. In response, we prepared a new series of miscible polymer blends and thus the corresponding crosslinked membranes based on highly sulfonated poly(ether ether ketone) and sulfonated polybenzimidazole. The blended membranes showed more compact structures, due to the acid‐base interactions between the two constituents, and improved mechanical and morphological properties. Further efforts by doping sulfonated graphene oxide (s‐GO) forming composite membranes led to not only significantly elevated proton conductivity and electrochemical performance, but also better mechanical properties. Notably, the composite membrane with the filler content of 15 wt % exhibited a proton conductivity of 0.217 S cm?1 at 80 °C, and its maximum power density tested by the H2/air single PEMFC cell at room temperature reached 171 mW cm?2, almost two and half folds compared with that of the native membrane. As a result, these polymeric membranes provided new options as proton exchange membranes for fuel‐cell applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46547.  相似文献   

6.
To improve the high‐temperature performance of proton exchange membranes, the polybenzimidazole (PBI)/α‐zirconium phosphate (α‐Zr(HPO4)2·nH2O, α‐ZrP) proton exchange composite membranes were prepared in this study. PBI polymer containing a large amount of ether units has been synthesized from 3,3′‐ diaminobenzidine (DAB) and 4,4′‐oxybis (benzoic acid) by a direct polycondensation in polyphosphoric acid. The polymer exhibited a good solubility in most polar solvents. Inorganic proton conductor α‐ZrP nanoparticles have been obtained using a synthesis route involving separate nucleation and aging steps (SNAS). The effects of α‐ZrP doping content on the composite membrane performance were investigated. It was found that the introduction of ZrP improved the thermal stability of the composite membranes. The PBI/ZrP composite membranes exhibited excellent mechanical strength. The composite membrane with 10 wt% ZrP showed the highest proton conductivity of 0.192 S cm?1 at 160°C under anhydrous condition. The proton conducting mechanism of the PBI/ZrP composite membranes was proposed to explain the proton transport phenomena. The experimental results suggested that the PBI/ZrP composite membranes may be a promising polymer electrolyte used in high temperature proton exchange membrane fuel cells (HT‐PEMFCs) under anhydrous condition. POLYM. ENG. SCI., 56:622–628, 2016. © 2016 Society of Plastics Engineers  相似文献   

7.
Proton and lithium-ion conducting biodegradable solid polymer electrolytes were prepared using blends of poly(styrene sulphonic acid) (PSSA) and starch for supercapacitor applications. The ionic conductivities have been calculated using the bulk impedance obtained through impedance spectroscopy with varying blend ratio and plasticizer. Glycerol as plasticizer improved the film formation property, while lithium perchlorate (LiClO4) as dopant enhanced the conductivity. The maximum conductivity has been found to be 5.7?×?10?3?Scm?1 at room temperature for 80/20 (PSSA/starch) blend ratio. The dielectric studies showed relaxation peaks indicating proton and Li+ conduction in the plasticized polymer blend matrix and dielectric modulus also exhibited a long tail feature indicating good capacitance. Differential scanning calorimetry thermograms showed two peaks and decreased with varying blend ratio and plasticizer. A carbon?Ccarbon supercapacitor was fabricated using suitable electrolyte, and its electrochemical characteristics using cyclic voltammetry, AC impedance and galvanostatic charge?Cdischarge were studied. Supercapacitor showed a fairly good specific capacitance of 115?Fg?1 at 10?mV s?1.  相似文献   

8.
A new hybrid polymer electrolyte system based on chemical‐covalent polyether and siloxane phases is designed and prepared via the sol–gel approach and epoxide crosslinking. FT‐IR, 13C solid‐state NMR, and thermal analysis (differential scanning calorimetry (DSC) and TGA) are used to characterize the structure of these hybrids. These hybrid films are immersed into the liquid electrolyte (1M LiClO4/propylene carbonate) to form plasticized polymer electrolytes. The effects of hybrid composition, liquid electrolyte content, and temperature on the ionic conductivity of hybrid electrolytes are investigated and discussed. DSC traces demonstrate the presence of two second‐order transitions for all the samples and show a significant change in the thermal events with the amount of absorbed LiClO4/PC content. TGA results indicate these hybrid networks with excellent thermal stability. The EDS‐0.5 sample with a 75 wt % liquid electrolyte exhibits the ionic conductivity of 5.3 × 10?3 S cm?1 at 95°C and 1.4 × 10?3 S cm?1 at 15°C, in which the film shows homogenous and good mechanical strength as well as good chemical stability. In the plot of ionic conductivity and composition for these hybrids containing 45 wt % liquid electrolyte, the conductivity shows a maximum value corresponding to the sample with the weight ratio of GPTMS/PEGDE of 0.1. These obtained results are correlated and used to interpret the ion conduction behavior within the hybrid networks. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1000–1007, 2006  相似文献   

9.
Solvents and electrolytes play an important role in the fabrication of dye‐sensitized solar cells (DSSCs). We have studied the poly(ethylene oxide)‐poly(methyl methacrylate)‐KI‐I2 (PEO‐PMMA‐KI‐I2) polymer blend electrolytes prepared with different wt % of the 2‐mercaptopyridine by solution casting method. The polymer electrolyte films were characterized by the FTIR, X‐ray diffraction, electrochemical impedance and dielectric studies. FTIR spectra revealed complex formation between the PEO‐PMMA‐KI‐I2 and 2‐mercaptopyrindine. Ionic conductivity data revealed that 30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2 electrolyte can show higher conductivity (1.55 × 10?5 S cm?1) than the other compositions (20, 40, and 50%). The effect of solvent on the conductivity and dielectric of solid polymer electrolytes was studied for the best composition (30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2) electrolyte using various organic solvents such as acetonitrile, N,N‐dimethylformamide, 2‐butanone, chlorobenzene, dimethylsulfoxide, and isopropanol. We found that ac‐conductivity and dielectric constant are higher for the polymer electrolytes processed from N,N‐dimethylformamide. This observation revealed that the conductivity of the solid polymer electrolytes is dependent on the solvent used for processing and the dielectric constant of the film. The photo‐conversion efficiency of dye‐sensitized solar cells fabricated using the optimized polymer electrolytes was 3.0% under an illumination of 100 mW cm?2. The study suggests that N,N‐dimethylformamide is a good solvent for the polymer electrolyte processing due to higher ac‐conductivity beneficial for the electrochemical device applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42489.  相似文献   

10.
This work aims at developing and characterizing a proton conducting polymer electrolyte based on Poly(N‐vinyl pyrrolidone) (PVP) doped with ammonium bromide (NH4Br). Proton conducting polymer electrolytes based on PVP doped NH4Br in different molar ratios have been prepared by solution casting technique using distilled water as solvent. The XRD pattern confirms the dissociation of salt. The FTIR analysis confirms the complex formation between the polymer and the salt. The conductivity analysis shows that the polymer electrolyte with 25 mol % NH4Br has the highest conductivity equal to 1.06 × 10?3 S cm?1 at room temperature. Also it has been observed that the activation energy evaluated from the Arrhenius plot is low (0.50 eV) for 25 mol % NH4Br doped polymer electrolyte. The influence of salt concentration on dc conductivity and activation energy of the polymer electrolyte has been discussed. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Heterocyclic molecules are generally used in the proton conducting membranes as dopant or polymer side group due to their high proton transfer ability. Composite proton conducting membranes based on poly(vinylphosphonic acid) (PVPA) and poly(5‐(methacrylamido)tetrazole) (PMTet) were produced. The homopolymers, prepared from their corresponding monomers, were blended at several mol ratios to obtain the polymer electrolyte membranes. All samples were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differantial scanning calorimetry (DSC), cyclic voltammetry (CV), and impedance analysis. Besides, the morphology of the membranes was studied by X‐ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). FTIR spectra confirmed the formation of hydrogen bonding network between PVPA and PMTet units. TGA showed that the polymer electrolyte membranes were thermally stable up to ~210°C. CV curves demonstrated the oxidative stability of the samples in 3 V region. In anhydrous conditions, the maximum proton conductivity was determined as 0.06 Scm?1 at 150°C for PMTetP(VPA)4. POLYM. ENG. SCI., 55:260–269, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
The lithium‐ion conducting gel polymer electrolytes (GPE), PVAc‐DMF‐LiClO4 of various compositions have been prepared by solution casting technique. 1H NMR results reveal the existence of DMF in the gel polymer electrolytes at ambient temperature. Structure and surface morphology characterization have been studied by X‐ray diffraction analysis (XRD) and scanning electron microscopy (SEM) measurements. Thermal and conductivity behavior of polymer‐ and plasticizer‐salt complexes have been studied by differential scanning calorimetry (DSC), TG/DTA, and impedance spectroscopy results. XRD and SEM analyses indicate the amorphous nature of the gel polymer‐salt complex. DSC measurements show a decrease in Tg with the increase in DMF concentrations. The thermal stability of the PVAc : DMF : LiClO4 gel polymer electrolytes has been found to be in the range of (30–60°C). The dc conductivity of gel polymer electrolytes, obtained from impedance spectra, has been found to vary between 7.6 × 10?7 and 4.1 × 10?4 S cm?1 at 303 K depending on the concentration of DMF (10–20 wt %) in the polymer electrolytes. The temperature dependence of conductivity of the polymer electrolyte complexes appears to obey the VTF behavior. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
A comb‐like polyether, poly(3‐2‐[2‐(2‐methoxyethoxy)ethoxy]ethoxymethyl‐3′‐methyloxetane) (PMEOX), was reacted with hexamethylene diisocyanate and extended with butanediol in a one‐pot procedure to give novel thermoplastic elastomeric poly(ether urethane)s (TPEUs). The corresponding hybrid solid polymer electrolytes were fabricated through doping a mixture of TPEU and poly(vinylidene fluoride) with three kinds of lithium salts, LiClO4, LiBF4 and lithium trifluoromethanesulfonimide (LiTFSI), and were characterized using differential scanning calorimetry, thermogravimetric analysis and Fourier transform infrared spectroscopy. The ionic conductivity of the resulting polymer electrolytes was then assessed by means of AC impedance measurements, which reached 2.1 × 10?4 S cm?1 at 30 °C and 1.7 × 10?3 S cm?1 at 80 °C when LiTFSI was added at a ratio of O:Li = 20. These values can be further increased to 3.5 × 10?4 S cm?1 at 30 °C and 2.2 × 10?3 S cm?1 at 80 °C by introducing nanosized SiO2 particles into the polymer electrolytes. Copyright © 2006 Society of Chemical Industry  相似文献   

14.
Proton conducting membranes based on polymers containing sulfonic acid and tetrazole moieties were developed. Successful syntheses of poly(acrylonitrile‐co ‐styrene sulfonic acid) (PAN‐co ‐PSSA), poly(acrylonitrile‐co ‐5‐vinyl tetrazole) (PAN‐co ‐PVTz), and poly(acrylonitrile‐co ‐5‐vinyl tetrazole‐co ‐styrene sulfonic acid) (PAN‐co ‐PVTz‐co ‐PSSA) were confirmed by 1H‐nuclear magnetic resonance spectroscopy, elemental analysis, and Fourier transform infrared spectroscopy. Two approaches were performed to study the effects of molar ratio of sulfonic acid to tetrazole and tetrazole content on membrane properties. In the first approach, PAN‐co ‐PSSA was blended with PAN‐co ‐PVTz at three molar ratios. The second approach focused on PAN‐co ‐PVTz‐co ‐PSSA membranes with various tetrazole contents. PAN‐co ‐PSSA membrane was also prepared. All solution‐cast membranes were hydrolytically stable, except for PAN‐co ‐PVTz‐co ‐PSSA with 71% tetrazole. Surface morphologies of blend membranes were studied using scanning electron microscopy, and no phase separation was observed. Water uptake was shown to increase with increasing tetrazole. All membranes exhibited high thermal stability (up to 250 °C) and high storage moduli. Proton conductivity was found to depend significantly on relative humidity. The influences of sulfonic acid to tetrazole ratio and tetrazole content on proton conduction were observed and discussed. A maximum proton conductivity of 7.1 × 10?3 S/cm at 26 °C was obtained from PAN‐co ‐PSSA membrane. In addition, all tested membranes showed relatively good oxidative stability after treatment in Fenton's reagent. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45411.  相似文献   

15.
Polymer electrolyte blend membranes composed of sulfonated block‐graft polyimide (S‐bg‐PI) and sulfonated polybenzimidazole (sPBI) were prepared and characterized. The proton conductivity and oxygen permeability coefficient of the novel blend membrane S‐bg‐PI/sPBI (7 wt%) were 0.38 S cm?1 at 90 °C and 98% relative humidity and 7.2 × 10?13 cm3(STP) cm (cm2 s cmHg)?1 at 35 °C and 76 cmHg, respectively, while those of Nafion® were 0.15 S cm?1 and 1.1 × 10?10 cm3(STP) cm (cm2 s cmHg)?1 under the same conditions. The apparent (proton/oxygen transport) selectivity calculated from the proton conductivity and the oxygen permeability coefficient in the S‐bg‐PI/sPBI (7 wt%) membrane was 300 times larger than that determined in the Nafion membrane. Besides, the excellent gas barrier properties based on an acid ? base interaction in the blend membranes are expected to suppress the generation of hydrogen peroxide and reactive oxygen species, which will degrade fuel cells during operation. The excellent proton conductivity and gas barrier properties of the novel membranes promise their application for future fuel cell membranes. © 2015 Society of Chemical Industry  相似文献   

16.
Achievement of high conductivity and electrochemical window at ambient temperature for an all‐solid polymer electrolyte used in lithium ion batteries is a challenge. Here, we report the synthesis and characterization of a novel solid‐state single‐ion electrolytes based on comb‐like siloxane copolymer with pendant lithium 4‐styrenesulfonyl (perfluorobutylsulfonyl) imide and poly(ethylene glycol). The highly delocalized anionic charges of ? SO2? N(–)? C4F9 have a weak association with lithium ions, resulting in the increase of mobile lithium ions number. The designed polymer electrolytes possess ultra‐low glass transition temperature in the range from ?73 to ?54 °C due to the special flexible polysiloxane. Promising electrochemical properties have been obtained, including a remarkably high conductivity of 3.7 × 10?5 S/cm and electrochemical window of 5.2 V (vs. Li+/Li) at room temperature. A high lithium ion transference number of 0.80, and good compatibility with anode were also observed. These prominent characteristics endow the polymer electrolyte a potential for the application in high safety lithium ion batteries. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45848.  相似文献   

17.
The synthesis and thermal as well as proton conducting properties of complex polymer electrolytes based on poly(2-acrylamido-2-methyl-1-propanesulfonic acid) PAMPS and poly(1-vinyl-1,2,4-triazole) PVTri were investigated. The materials were produced by complexation of PAMPS with PVTri at various compositions to get PVTriP(AMPS) x where x is the molar ratio of the polymer repeating units and varied from 0.25 to 4. The structure of the materials was confirmed by FT-IR spectroscopy. The TGA results verified that the polymer electrolytes are thermally stable up to approximately 200 °C. The DSC and SEM results demonstrated the homogeneity of the materials. The electrochemical stability of the materials was studied by cyclic voltammeter (CV). Proton conductivity, activation energy, and water/methanol uptake of these membranes were also measured. After humidification (RH = 50%), PVTriP(AMPS)2 and PVTriP(AMPS)4 showed proton conductivities of 0.30 and 0.06 S/cm at 100 °C, respectively.  相似文献   

18.
Fuel cells are being developed to overcome the global energy crisis. The objective of this research is to prepare an environmental‐friendly and cheap material as the polymer electrolyte membrane. Coconut water was fermented by Acetobacter xylinum to produce nata‐de‐coco and the phosphorylation was carried out by microwave‐assisted reaction. The resulting membranes are characterized by ion exchange capacity, contact angle, proton conductivity, swelling index, methanol permeability, mechanical properties measurement and morphological analysis. At the optimum phosphorylation condition using 17.35 mmol of phosphoric acid, membrane showed a proton conductivity of 1.2 × 10?2 S/cm and a methanol permeability of 2.3 × 10?6 cm2/s. The tensile strength of the produced membranes increases significantly and the arrangement of the cellulosic fibers are kept well‐aligned. It is concluded that a green and sustainable natural resources can be used for preparing electrolyte membrane. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Hyperbranched polymer was synthesized from pentaerythritol (as the central core), 1,2,4‐trimellitic anhydride, and epichlorohydrin, and then hyperbranched polymer electrolytes with terminal ionic groups were prepared by the reaction of hyperbranched polymer with N‐methyl imidazole. The chemical structure, thermal behavior, and ionic conductive property of the hyperbranched polymer electrolytes were investigated by 1H‐NMR, FTIR, differential scanning calorimetry, thermogravimetric analyzer, and complex impedance analysis, respectively. The ionic conductivity of hyperbranched polymer electrolyte was up to 2.4 × 10?4 S cm?1 at 30°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Proton‐exchange membrane fuel cells (PEMFC)s are increasingly regarded as promising environmentally benign power sources. Heterocyclic molecules are commonly used in the proton conducting membranes as dopant or polymer side group due to their high proton transfer ability. In this study, 5‐(methacrylamido)tetrazole monomer, prepared by the reaction of methacryloyl chloride with 5‐aminotetrazole, was polymerized via conventional free radical mechanism to achieve poly(5‐(methacrylamido)tetrazole) homopolymer. Novel composite membranes, SPSU‐PMTetX, were successfully produced by incorporating sulfonated polysulfone (SPSU) into poly(5‐(methacrylamido)tetrazole) (PMTet). The sulfonation of polysulfone was performed with trimethylsilyl chlorosulfonate and high degree of sulfonation (140%) was obtained. The homopolymers and composite membranes have been characterized by NMR, FTIR, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). 1H‐NMR and FTIR confirmed the sulfonation of PSU and the ionic interaction between sulfonic acid and poly(5‐(methacrylamido)tetrazole) units. TGA showed that the polymer electrolyte membranes are thermally stable up to ~190°C. Scanning electron microscopy analysis indicated the homogeneity of the membranes. This result was also supported by the appearance of a single Tg in the DSC curves of the blends. Water uptake and proton conductivity measurements were, as well, carried out. Methanol permeability measurements showed that the composite membranes have similar methanol permeability values with Nafion 112. The maximum proton conductivity of anhydrous SPSU‐PMTet0.5 at 150°C was determined as 2.2 × 10?6 S cm?1 while in humidified conditions at 20°C a value of 6 × 10?3 S cm?1 was found for SPSU‐PMTet2. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40107.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号