首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
建筑结构与爆破震动响应的动力学计算方法   总被引:1,自引:0,他引:1  
爆破震动是在城市进行拆除爆破中需要考虑的重要问题。作者提出几种计算爆破地震力的方法。首先介绍工程中广泛采用的反应谱法,并在反应谱法的基础上提出了一种计算结构在爆破震动作用下内力大小的方法-底部剪力法。该方法简便可靠,在工程中有一定的可行性。  相似文献   

2.
爆炸荷载下结构响应的EMD分析   总被引:2,自引:0,他引:2  
通过经验模态分解法(EMD)将信号分解为固有模态函数(IMF),结果表明震动信号是由不同频率的具有实际物理意义的固有模态函数分量组成.同时建立了爆炸荷载下的单自由度体系结构动态响应模型,并运用实例分析了结构在爆破震动下的动力放大效应.分析表明不同的IMF分量对结构的影响各不相同,两者频率越接近,其共振作用就越明显.结构对荷载的响应主要取决于不同幅值、不同频率的各IMF分量的共同作用.图5,表1,参11.  相似文献   

3.
爆破荷载作用下埋地管道的动态响应是城市爆破施工中亟需解决的问题,具有重要的理论和现实意义。在理论分析的基础上,通过改变药量、爆心距对不同尺寸埋地无缝钢管进行了现场爆破实验。结果表明:在正常工作压力下钢管内径和管壁厚度的比值越大,当量应力和当量应变越大,同时管道容许压缩应变值随管道内径与管壁厚的比值的增大而减小。通过实测数据分析发现:在相同条件下,S1拉应变为S2拉应变的41%;S2拉应变为S3拉应变的40%;S1压应变为S2压应变的23%;S2压应变为S3压应变的58%。在爆破荷载作用下管道截面三迎爆面环向拉压应变均随着管道内径与管壁厚的比值的增大而增大。实验中S3最易被破坏,S2其次,S1次之。在满足工程需要的前提下可在铺设管道时选择相对管壁厚、内径小的管道,能有效增加抗振性能。  相似文献   

4.
随着爆破在工程上的应用越来越广泛,它所带来的危害也日益增多。因此,通过介绍爆破震动特点及对实体工程进行监测,运用国际通用分析软件ANSYS对二层框架结构房屋进行动力响应分析,给出了结构受损部位和破坏规律。  相似文献   

5.
爆破震动是在城市进行拆除爆破中需要考虑的重要问题。作者提出几种计算爆破地震力的方法。首先介绍工程中广泛采用的反应谱法,并在反应谱法的基础上提出了一种计算结构在爆破震动作用下内力大小的方法———底部剪力法。该方法简便可靠,在工程中有一定的可行性。  相似文献   

6.
以深圳地铁某车站基坑开挖遇硬岩爆破施工为工程背景,分析了基坑爆破开挖对邻近建筑物的震动加速度及速度响应规律。结果表明:爆破施工引起会引起邻近建筑物的震动,建筑物的最大震动响应出现在炸药爆破过程中,随后逐步衰减致稳定。震动沿建筑物各个方向的响应增长或衰减情况有所差异,震动响应随着程高增加而增大,随着水平X方向距离和水平Y方向距离增加而减小;且水平Y方向响应衰减程度大于水平X方向;该建筑物各个监测点的震动速度均在工程安全规定范围内,在车站基坑爆破过程中处于安全状态。  相似文献   

7.
8.
构建纵向采空区群离散多自由度动力响应模型,提出基于结构模态的空区群爆破动力响应分析方法.针对某金矿工程实例,对该方法进行检验分析.结果表明:该方法计算结果可直观反映采空区群内部岩体的位移与速度响应规律,揭示岩体爆破动力响应特性,与数值模拟结果趋于一致;受内部阻尼作用,岩体作减幅振动,振幅逐渐衰减至0;在爆破荷载施加位置,岩体响应强度最大,随着与爆破作用点之间距离增大,响应强度呈减弱趋势.结构模态分析方法可大幅缩短计算时间、提高计算效率,为岩体的动力响应研究提供了一种新方法.  相似文献   

9.
为了分析核电站复杂结构地震动态响应,以MPI作为基本并行编程环境,在LINUX操作系统下,开发了核电站结构地震动态响应的并行有限元计算程序。该程序采用黏弹性边界模拟外行波向远域地基的辐射,方程的求解采用时域显式解法,能够模拟包含各类静动荷载以及温度、接触等因素作用下的结构响应。经算例验证,该程序正确可靠。利用该程序对某核电站取水口建筑物进行了动态响应分析,并与ANSYS软件的分析进行比较,所花费时间从单机串行程序的20h40min减少到并行程序下的2h15min。结果证明,该并行程序具有较高的并行度以及良好的并行效率。  相似文献   

10.
针对竖向地震波分量对结构抗震性能影响,分别简要介绍了国内外在竖向地震波分量对建筑结构和桥梁结构抗震性能影响方面所做的研究工作,对已有研究工作存在的问题作了一些分析,指出一些需要进一步研究和解决的问题。  相似文献   

11.
爆破地震效应强度与爆破地震荷载的探讨   总被引:4,自引:0,他引:4  
对爆破地震的振动速度与爆破振动反应谱进行了分析和探讨,为解决工程爆破问题提供了参考意见.  相似文献   

12.
围绕爆破振动对相邻建筑的影响,从房屋受损评估、爆破振动的传感器选择、爆源远近对地震效应的影响、正确的传感器布置方式、岩体特性对爆破振动的影响和爆破危害等方面入手,介绍了在鉴定房屋及爆破振动测试过程中出现的一些常见问题,旨在对减小爆破振动效应、避免相临建筑造成影响以及正确建立爆破振动测试参数等提供参考。  相似文献   

13.
露天浅孔爆破震动反应谱特征   总被引:2,自引:0,他引:2  
结合汕头华能电厂爆破监测阶段所得数据进行分析,对露天浅孔爆破地震反应谱特征进行了分析研究。所得结果不仅对建筑物抗震设计提供依据,还将对爆破振动的研究有推动作用。  相似文献   

14.
隧道爆破振动对古建筑影响的试验研究   总被引:1,自引:1,他引:0  
结合南京地铁四号线鼓楼站区间隧道爆破开挖工程,通过现场试验的方法,得到了适用于现场地质条件下的三个方向上的萨道夫斯基预测公式,为爆破开挖设计提供参考。结果表明:地表质点垂直方向振动速度峰值距离爆源近时,比两个水平方向振动速度峰值大,远处时则最小;且在30 m内迅速衰减。鼓楼城阙垂直方向的振动速度峰值最大,碑楼水平方向的振动速度峰值最大,振动速度峰值随着药量增加总体上呈现增加,采取微差爆破可有效减小振动速度峰值。  相似文献   

15.
依托右线隧道穿过民房正下方的福建省厦门市石堀山隧道工程,在民房第一、二层墙角处各布置一台自动化爆破振动仪,对爆破开挖引起的振动进行长期监测.结果表明:爆破振速整体上随着测点与掌子面距离的减小而增大;在三向振速中,垂向振速不一定总是最大,但主频小于30 Hz,垂向振速占比最多;分析时应综合振速与主频,选择优势分向振速,或根据建筑物固有频率,选择接近的主频对应的分向振速;当测点与掌子面距离为10~50 m时,爆破振度显著放大,而主频有一定的衰减,径向和垂向主频衰减至与房屋固有频率接近;当测点与掌子面距离为50 m内时,随着掌子面远离测点,振速影响系数Cv先增大后减小,主频影响系数Cf先减小后增大;空洞影响垂向最大,径向次之,切向最小;Cv最大值为3.4,Cf最小值为0.35.  相似文献   

16.
为研究隧道爆破地震波作用下砌体建筑物的振动响应,以青岛地铁3号线下穿某砌体建筑物爆破施工为背景,通过现场爆破振动监测和有限元数值模拟,对砌体结构的爆破振动速度和主振频率随楼层的变化规律进行研究。结合数值计算,进一步分析隧道埋深、单段最大装药量,装药结构等不同因素下砌体建筑物的振动响应。分析表明:在隧道爆破地震波作用下砌体结构在垂直方向的振动响应强度明显大于水平方向,并且存在一定的高程放大效应,在爆破施工时应加强对砌体结构顶层的防护;隧道下穿砌体建筑物施工时,爆破地震波的主频率主要集中在10~60 Hz内,建筑物自振频率则大多为3.0~3.5 Hz,该砌体建筑物与爆破地震波较难发生共振;砌体结构动力响应强度随着不耦合系数的增加而逐渐降低,随单段最大装药量增加近似呈线性关系,改变装药结构及控制单段最大装药量是控制爆破振动的有效措施;爆破振动速度对隧道的埋深响应敏感,在数值上出现数量级的变化。通过对多层砌体结构振动响应分析,有利于不断提高与完善现有的爆破技术与减振措施。  相似文献   

17.
工程爆破中的建筑物振动监测   总被引:20,自引:0,他引:20       下载免费PDF全文
首先就工程爆破施工中建筑物的振动监测问题进行了较为全面的介绍,从振动速度、频率、地基土壤性质等方面分析了爆破地震波引起结构物破坏的原因,并结合工程实例,就结构物的振动数据采集提出了见解.研究认为,建筑物的安全阈值应根据结构最易发生破坏的部位所采集的数据为标准来进行判断,而不是根据结构物地面所采集的数据来确定.  相似文献   

18.
为研究隐伏岩溶区小净距隧道开挖及爆破振动对施工安全的影响规律,以贵州省里平II号隧道工程为依托,以隐伏岩溶区小净距隧道为研究对象,通过LS-DYNA对不同工况进行数值模拟及分析,得到了爆破振动效应下围岩的应力分布和位移变化情况,总结了隧道爆破地震波沿隧道轴向及衬砌环向的速度衰减规律,分析了振动速度峰值随溶洞直径大小及溶洞隧道距离大小的变化规律。研究结果表明:当溶洞直径一定时,围岩竖向位移、隧道拱顶监测点振动速度峰值随着溶洞与隧道之间距离的增大而减小;当溶洞与隧道之间的距离一定时,围岩竖向位移、隧道拱顶监测点振动速度峰值随溶洞直径的增大而减小;里平II号隧道中溶洞直径为2m且溶洞与隧道之间的距离为3m时,先行洞初衬最大主应力超出了混凝土抗拉强度,故爆破开挖前应对该位置进行加固处理,确保施工安全。可见,其分析结果可为指导隐伏岩溶区小净距隧道爆破施工提供可靠依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号