首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let ${\mathfrak{a}}$ be an ideal of a commutative Noetherian ring R and M a finitely generated R-module. It is shown that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))= {\rm Ann}_R(M/T_R(\mathfrak{a}, M))}$ , where ${T_R(\mathfrak{a}, M)}$ is the largest submodule of M such that ${{\rm cd}(\mathfrak{a}, T_R(\mathfrak{a}, M)) < {\rm cd}(\mathfrak{a}, M)}$ . Several applications of this result are given. Among other things, it is shown that there exists an ideal ${\mathfrak{b}}$ of R such that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))={\rm Ann}_R(M/H_{\mathfrak{b}}^{0}(M))}$ . Using this, we show that if ${ H_{\mathfrak{a}}^{{\rm dim} R}(R)=0}$ , then ${{{\rm Att}_R} H^{{\rm dim} R-1}_{\mathfrak a}(R)= \{\mathfrak{p} \in {\rm Spec} R | \,{\rm cd}(\mathfrak{a}, R/\mathfrak{p}) = {\rm dim} R-1\}.}$ These generalize the main results of Bahmanpour et al. (see [2, Theorem 2.6]), Hellus (see [7, Theorem 2.3]), and Lynch (see [10, Theorem 2.4]).  相似文献   

2.
We initiate a new line of investigation on branching problems for generalized Verma modules with respect to reductive symmetric pairs $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ . In general, Verma modules may not contain any simple module when restricted to a reductive subalgebra. In this article we give a necessary and sufficient condition on the triple $ \left( {\mathfrak{g},\mathfrak{g}',\mathfrak{p}} \right) $ such that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ always contains simple $ \mathfrak{g}' $ -modules for any $ \mathfrak{g} $ -module X lying in the parabolic BGG category $ {\mathcal{O}^\mathfrak{p}} $ attached to a parabolic subalgebra $ \mathfrak{p} $ of $ \mathfrak{g} $ . Formulas are derived for the Gelfand?CKirillov dimension of any simple module occurring in a simple generalized Verma module. We then prove that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ is generically multiplicity-free for any $ \mathfrak{p} $ and any $ X \in {\mathcal{O}^\mathfrak{p}} $ if and only if $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ is isomorphic to (A n , A n-1), (B n , D n ), or (D n+1, B n ). Explicit branching laws are also presented.  相似文献   

3.
Let $ \mathfrak{g} $ be a reductive Lie algebra over $ \mathbb{C} $ and $ \mathfrak{k} \subset \mathfrak{g} $ be a reductive in $ \mathfrak{g} $ subalgebra. We call a $ \mathfrak{g} $ -module M a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module whenever M is a direct sum of finite-dimensional $ \mathfrak{k} $ -modules. We call a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module M bounded if there exists $ {C_M} \in {\mathbb{Z}_{{ \geqslant 0}}} $ such that for any simple finite-dimensional $ \mathfrak{k} $ -module E the dimension of the E-isotypic component is not greater than C M dim E. Bounded $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -modules form a subcategory of the category of $ \mathfrak{g} $ -modules. Let V be a finite-dimensional vector space. We prove that the categories of bounded $ \left( {\mathfrak{sp}\left( {{{\mathrm{S}}^2}V \oplus {{\mathrm{S}}^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ - and $ \left( {\mathfrak{sp}\left( {{\varLambda^2}V \oplus {\varLambda^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ -modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of V .  相似文献   

4.
Let $\mathfrak{g}$ be a semisimple Lie algebra and $\mathfrak{k}$ be a reductive subalgebra in $\mathfrak{g}$ . We say that a $\mathfrak{g}$ -module M is a $(\mathfrak{g},\mathfrak{k})$ -module if M, considered as a $\mathfrak{k}$ -module, is a direct sum of finite-dimensional $\mathfrak{k}$ -modules. We say that a $(\mathfrak{g},\mathfrak{k})$ -module M is of finite type if all $\mathfrak{k}$ -isotopic components of M are finite-dimensional. In this paper we prove that any simple $(\mathfrak{g},\mathfrak{k})$ -module of finite type is holonomic. A simple $\mathfrak{g}$ -module M is associated with the invariants V(M), V(LocM), and L(M) reflecting the ??directions of growth of M.?? We also prove that for a given pair $(\mathfrak{g},\mathfrak{k})$ the set of possible invariants is finite.  相似文献   

5.
Let J and ${{\mathfrak{J}}}$ be operators on a Hilbert space ${{\mathcal{H}}}$ which are both self-adjoint and unitary and satisfy ${J{\mathfrak{J}}=-{\mathfrak{J}}J}$ . We consider an operator function ${{\mathfrak{A}}}$ on [0, 1] of the form ${{\mathfrak{A}}(t)={\mathfrak{S}}+{\mathfrak{B}}(t)}$ , ${t \in [0, 1]}$ , where ${\mathfrak{S}}$ is a closed densely defined Hamiltonian ( ${={\mathfrak{J}}}$ -skew-self-adjoint) operator on ${{\mathcal{H}}}$ with ${i {\mathbb{R}} \subset \rho ({\mathfrak{S}})}$ and ${{\mathfrak{B}}}$ is a function on [0, 1] whose values are bounded operators on ${{\mathcal{H}}}$ and which is continuous in the uniform operator topology. We assume that for each ${t \in [0,1] \,{\mathfrak{A}}(t)}$ is a closed densely defined nonnegative (=J-accretive) Hamiltonian operator with ${i {\mathbb{R}} \subset \rho({\mathfrak{A}}(t))}$ . In this paper we give sufficient conditions on ${{\mathfrak{S}}}$ under which ${{\mathfrak{A}}}$ is conditionally reducible, which means that, with respect to a natural decomposition of ${{\mathcal{H}}}$ , ${{\mathfrak{A}}}$ is diagonalizable in a 2×2 block operator matrix function such that the spectra of the two operator functions on the diagonal are contained in the right and left open half planes of the complex plane. The sufficient conditions involve bounds on the resolvent of ${{\mathfrak{S}}}$ and interpolation of Hilbert spaces.  相似文献   

6.
This paper is a survey of our recent results concerning metabelian varieties, and more specifically, varieties generated by wreath products of Abelian groups. We give a full classification of cases where sets of wreath products of Abelian groups $ \mathfrak{X} $ Wr $ \mathfrak{Y} $ = { X Wr Y | X ∈ $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } and $ \mathfrak{X} $ wr $ \mathfrak{Y} $ = {X wr Y | X $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } generate the product variety $ \mathfrak{X} $ var ( $ \mathfrak{Y} $ ).  相似文献   

7.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

8.
Let G be a commutative group, written additively, with a neutral element 0, and let K be a finite group. Suppose that K acts on G via group automorphisms ${G \ni a \mapsto ka \in G}$ , ${k \in K}$ . Let ${{\mathfrak{H}}}$ be a complex Hilbert space and let ${{\mathcal L}({\mathfrak{H}})}$ be the algebra of all bounded linear operators on ${{\mathfrak{H}}}$ . A mapping ${u \colon G \to {\mathcal L}({\mathfrak{H}})}$ is termed a K-spherical function if it satisfies (1) ${|K|^{-1} \sum_{k\in K} u (a+kb)=u (a) u (b)}$ for any ${a,b\in G}$ , where |K| denotes the cardinality of K, and (2) ${u (0) = {\rm id}_{\mathfrak {H}},}$ where ${{\rm id}_{\mathfrak {H}}}$ designates the identity operator on ${{\mathfrak{H}}}$ . The main result of the paper is that for each K-spherical function ${u \colon G \to {\mathcal {L}}({\mathfrak {H}})}$ such that ${\| u \|_{\infty} = \sup_{a\in G} \| u (a)\|_{{\mathcal L}({\mathfrak{H}})} < \infty,}$ there is an invertible operator S in ${{\mathcal L}({\mathfrak{H}})}$ with ${\| S \| \, \| S^{-1}\| \leq |K| \, \| u \|_{\infty}^2}$ such that the K-spherical function ${{\tilde{u}} \colon G \to {\mathcal L}({\mathfrak{H}})}$ defined by ${{\tilde{u}}(a) = S u (a) S^{-1},\,a \in G,}$ satisfies ${{\tilde{u}}(-a) = {\tilde{u}}(a)^*}$ for each ${a \in G}$ . It is shown that this last condition is equivalent to insisting that ${{\tilde{u}}(a)}$ be normal for each ${a \in G}$ .  相似文献   

9.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

10.
We study the structure of a metric n-Lie algebra G over the complex field C. Let G = SR be the Levi decomposition, where R is the radical of G and S is a strong semisimple subalgebra of G. Denote by m(G) the number of all minimal ideals of an indecomposable metric n-Lie algebra and R ⊥ the orthogonal complement of R. We obtain the following results. As S-modules, R ⊥ is isomorphic to the dual module of G/R. The dimension of the vector space spanned by all nondegenerate invariant symmetric bilinear forms on G is equal to that of the vector space of certain linear transformations on G; this dimension is greater than or equal to m(G) + 1. The centralizer of R in G is equal to the sum of all minimal ideals; it is the direct sum of R ⊥ and the center of G. Finally, G has no strong semisimple ideals if and only if R⊥■R.  相似文献   

11.
We find a set of necessary and sufficient conditions under which the weight ${w: E \rightarrow \mathbb{R}^{+}}$ on the graph G = (V, E) can be extended to a pseudometric ${d : V \times V \rightarrow \mathbb{R}^{+}}$ . We describe the structure of graphs G for which the set ${\mathfrak{M}_{w}}$ of all such extensions contains a metric whenever w is strictly positive. Ordering ${\mathfrak{M}_{w}}$ by the pointwise order, we have found that the posets $({\mathfrak{M}_{w}, \leqslant)}$ contain the least elements ρ 0,w if and only if G is a complete k-partite graph with ${k \, \geqslant \, 2}$ . In this case the symmetric functions ${f : V \times V \rightarrow \mathbb{R}^{+}}$ , lying between ρ 0,w and the shortest-path pseudometric, belong to ${\mathfrak{M}_{w}}$ for every metrizable w if and only if the cardinality of all parts in the partition of V is at most two.  相似文献   

12.
Let R be a commutative Noetherian ring, and let n be a non-negative integer. In this article, by using the theory of Gorenstein dimensions, it is shown that whenever R is a homomorphic image of a Noetherian Gorenstein ring, then the invariants ${\inf\{i \in \mathbb{N}_0|\, \rm{dim\, Supp}(\mathfrak{b}^t H_{\mathfrak{a}}^i(M)) \geq n\, \rm{for\, all}\, t \in \mathbb{N}_0\}}$ and ${\inf\{\lambda_{\mathfrak{a} R_{\mathfrak{p}}}^{\mathfrak{b} R_{\mathfrak{p}}}(M_{\mathfrak{p}})|\, \mathfrak{p} \in {\rm Spec} \, R\, \rm{and\, dim}\, R/ \mathfrak{p} \geq n\}}$ are equal, for every finitely generated R-module M and for all ideals ${\mathfrak{a}, \mathfrak{b}}$ of R with ${\mathfrak{b}\subseteq \mathfrak{a}}$ . This generalizes Faltings’ Annihilator Theorem (see [6]).  相似文献   

13.
The restriction of a Verma module of ${\bf U}(\mathfrak{sl}_3)$ to ${\bf U}(\mathfrak{sl}_2)$ is isomorphic to a Verma module tensoring with all the finite dimensional simple modules of ${\bf U}(\mathfrak{sl}_2)$ . The canonical basis of the Verma module is compatible with such a decomposition. An explicit decomposition of the tensor product of the Verma module of highest weight 0 with a finite dimensional simple module into indecomposable projective modules in the category $\mathcal O_{\rm{int}}$ of quantum $\mathfrak{sl}_2$ is given.  相似文献   

14.
In this paper, we give non-existence theorems for Hopf hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C }^{m+2})$ with $\mathfrak D $ -parallel normal Jacobi operator ${\bar{R}}_N$ and $\mathfrak D $ -parallel structure Jacobi operator $R_{\xi }$ if the distribution $\mathfrak D $ or $\mathfrak D ^{\bot }$ component of the Reeb vector field is invariant by the shape operator, respectively.  相似文献   

15.
Let $\mathfrak{g }$ be a Lie algebra, $E$ a vector space containing $\mathfrak{g }$ as a subspace. The paper is devoted to the extending structures problem which asks for the classification of all Lie algebra structures on $E$ such that $\mathfrak{g }$ is a Lie subalgebra of $E$ . A general product, called the unified product, is introduced as a tool for our approach. Let $V$ be a complement of $\mathfrak{g }$ in $E$ : the unified product $\mathfrak{g } \,\natural \, V$ is associated to a system $(\triangleleft , \, \triangleright , \, f, \{-, \, -\})$ consisting of two actions $\triangleleft $ and $\triangleright $ , a generalized cocycle $f$ and a twisted Jacobi bracket $\{-, \, -\}$ on $V$ . There exists a Lie algebra structure $[-,-]$ on $E$ containing $\mathfrak{g }$ as a Lie subalgebra if and only if there exists an isomorphism of Lie algebras $(E, [-,-]) \cong \mathfrak{g } \,\natural \, V$ . All such Lie algebra structures on $E$ are classified by two cohomological type objects which are explicitly constructed. The first one $\mathcal{H }^{2}_{\mathfrak{g }} (V, \mathfrak{g })$ will classify all Lie algebra structures on $E$ up to an isomorphism that stabilizes $\mathfrak{g }$ while the second object $\mathcal{H }^{2} (V, \mathfrak{g })$ provides the classification from the view point of the extension problem. Several examples that compute both classifying objects $\mathcal{H }^{2}_{\mathfrak{g }} (V, \mathfrak{g })$ and $\mathcal{H }^{2} (V, \mathfrak{g })$ are worked out in detail in the case of flag extending structures.  相似文献   

16.
We study cohomological induction for a pair $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ , $ \mathfrak{g} $ being an infinitedimensional locally reductive Lie algebra and $ \mathfrak{k} \subset \mathfrak{g} $ being of the form $ \mathfrak{k}_{0} \subset C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ , where $ \mathfrak{k}_{0} \subset \mathfrak{g} $ is a finite-dimensional reductive in $ \mathfrak{g} $ subalgebra and $ C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ is the centralizer of $ \mathfrak{k}_{0} $ in $ \mathfrak{g} $ . We prove a general nonvanishing and $ \mathfrak{k} $ -finiteness theorem for the output. This yields, in particular, simple $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ -modules of finite type over k which are analogs of the fundamental series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study explicit versions of the construction when $ \mathfrak{g} $ is a root-reductive or diagonal locally simple Lie algebra.  相似文献   

17.
Let ${\mathcal{B}_{p,w}}$ be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space ${L^p(\mathbb{R},w)}$ , where ${p\in(1,\infty)}$ and w is a Muckenhoupt weight. We study the Banach subalgebra ${\mathfrak{U}_{p,w}}$ of ${\mathcal{B}_{p,w}}$ generated by all multiplication operators aI ( ${a\in PSO^\diamond}$ ) and all convolution operators W 0(b) ( ${b\in PSO_{p,w}^\diamond}$ ), where ${PSO^\diamond\subset L^\infty(\mathbb{R})}$ and ${PSO_{p,w}^\diamond\subset M_{p,w}}$ are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of ${\mathbb{R}\cup\{\infty\}}$ , and M p,w is the Banach algebra of Fourier multipliers on ${L^p(\mathbb{R},w)}$ . Under some conditions on the Muckenhoupt weight w, using results of the local study of ${\mathfrak{U}_{p,w}}$ obtained in the first part of the paper and applying the theory of Mellin pseudodifferential operators and the two idempotents theorem, we now construct a Fredholm symbol calculus for the Banach algebra ${\mathfrak{U}_{p,w}}$ and establish a Fredholm criterion for the operators ${A\in\mathfrak{U}_{p,w}}$ in terms of their Fredholm symbols. In four partial cases we obtain for ${\mathfrak{U}_{p,w}}$ more effective results.  相似文献   

18.
Let ${\mathfrak{g}=W_1}$ be the p-dimensional Witt algebra over an algebraically closed field ${k=\overline{\mathbb{F}}_q}$ , where p > 3 is a prime and q is a power of p. Let G be the automorphism group of ${\mathfrak{g}}$ . The Frobenius morphism F G (resp. ${F_\mathfrak{g}}$ ) can be defined naturally on G (resp. ${\mathfrak{g}}$ ). In this paper, we determine the ${F_\mathfrak{g}}$ -stable G-orbits in ${\mathfrak{g}}$ . Furthermore, the number of ${\mathbb{F}_q}$ -rational points in each ${F_\mathfrak{g}}$ -stable orbit is precisely given. Consequently, we obtain the number of ${\mathbb{F}_q}$ -rational points in the nilpotent variety.  相似文献   

19.
Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson?CHunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in ${L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ and ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ on the weighted Lebesgue spaces ${L^p(\mathbb{R},w)}$ , with 1?< p <? ?? and ${w\in A_p(\mathbb{R})}$ . The Banach algebras ${L^\infty(\mathbb{R}, V(\mathbb{R}))}$ and ${PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ consist, respectively, of all bounded measurable or piecewise continuous ${V(\mathbb{R})}$ -valued functions on ${\mathbb{R}}$ where ${V(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded total variation, and the Banach algebra ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ consists of all Lipschitz ${V_d(\mathbb{R})}$ -valued functions of exponent ${\gamma \in (0,1]}$ on ${\mathbb{R}}$ where ${V_d(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded variation on dyadic shells. Finally, for the Banach algebra ${\mathfrak{A}_{p,w}}$ generated by all pseudodifferential operators a(x, D) with symbols ${a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ on the space ${L^p(\mathbb{R}, w)}$ , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ .  相似文献   

20.
Let $(\mathfrak{g}, [p]) $ be a restricted Lie superalgebra over an algebraically closed field k of characteristic p?>?2. Let $\mathfrak{u}(\mathfrak{g})$ denote the restricted enveloping algebra of $\mathfrak{g}$ . In this paper we prove that the cohomology ring $\operatorname{H}^\bullet(\mathfrak{u}(\mathfrak{g}), k)$ is finitely generated. This allows one to define support varieties for finite dimensional $\mathfrak{u}(\mathfrak{g})$ -supermodules. We also show that support varieties for finite dimensional $\mathfrak{u}(\mathfrak{g})$ - supermodules satisfy the desirable properties of a support variety theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号