首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
以纳米α-Al2O3和Fe(NO3)3·9H2O为原料,采用非均相沉淀法制备了Fe包裹Al2O3的纳米复合粉体.经XRD、SEM分析发现:复合粉体前驱体经500 ℃焙烧,在H2中700 ℃还原可以得到纳米Fe包裹Al2O3的纳米复合粉体.粉体分散良好,Al2O3表面的纳米Fe粒子呈非连续状态,颗粒为球形,尺寸为30 nm左右,分布均匀.将复合粉体在热压下(30 MPa)烧结获得Al2O3/Fe复合陶瓷,当加入5mol%Fe时,陶瓷的热压烧结温度比单相Al2O3陶瓷降低将近100 ℃.含量为10mol%Fe的陶瓷样品在1500 ℃热压烧结后,断裂韧性可达到5.62 MPa,与相同条件下烧结的单相Al2O3陶瓷(KIc=3.57 MPa)相比提高了近57%.  相似文献   

2.
为了改善纳米莫来石粉体烧结性能,以硫酸铝和硅酸钠为主要合成原料,添加不同含量Sm2O3,采用共沉淀工艺制备莫来石前驱粉体,经过煅烧得到莫来石纳米粉体,研究了Sm2O3掺杂量对莫来石粉体微观结构和烧结性能的影响.研究表明:当Sm2O3的加入量为4wt%时,合成温度可由传统的1300 ℃左右降低至1000 ℃,晶粒尺寸约为39 nm,比表面积达到95.265 m2/g.说明适当掺杂Sm3+对于合成纳米莫来石具有改善微观结构,促进烧结,促进莫来石晶相形成的作用.  相似文献   

3.
采用 (NH4) 2 C2 O4为沉淀剂 ,基于共沉淀法制备了NiMnFeO4NTC热敏陶瓷 ,用TG、XRD、SEM、电导率测量等方法对前驱体、氧化物粉体及NTC陶瓷样品的进行了表征。结果表明 ,用此种方法制备的NTC陶瓷 ,其结构均匀、致密 ;烧结后经随炉冷却的样品 ,在 15 0℃老化 10 0 0h后 ,电阻漂移小于 1% ;而在 115 0℃下淬火的样品在同样的条件下 ,电阻漂移大于 4 %。  相似文献   

4.
郑翠红  汪洋 《化工时刊》2004,18(1):31-33
采用(NH4)2C2O4为沉淀剂,基于共沉淀法制备了NiMnFeO4 NTC热敏陶瓷,用TG、XRD、SEM、电导率测量等方法对前驱体、氧化物粉体及NTC陶瓷样品的进行了表征。结果表明,用此种方法制备的NTC陶瓷,其结构均匀、致密;烧结后经随炉冷却的样品,在150%老化l000h后,电阻漂移小于1%;而在1150℃下淬火的样品在同样的条件下,电阻漂移大于4%。  相似文献   

5.
液相沉淀法制备ZrO2/Al2O3纳米复合粉体   总被引:5,自引:0,他引:5  
以NH4Al(SO4)2·12H2O,ZrOCl2·8H2O,Y(NO)3为原材料,用NH4HCO3作沉淀剂,控制滴定速度小于5 mL/min,采用液相沉淀法制备了超细3Y-ZrO2/Al2O3前驱体.前驱体为分散的碱式碳酸盐,在1 200℃煅烧得到了分散性良好,平均粒径为20 nm的t-ZrO2和α-Al2O3两相分布均匀的纳米复合粉体.X射线衍射分析显示前驱体在煅烧过程中无中间相γ-Al2O3,θ-Al2O3生成.所制备的粉体具有高的烧结活性.在1 450℃烧结后烧结体相对致密度可达97.4%.  相似文献   

6.
用国产六面顶压机在5.0GPa,1300℃~1800℃条件下实现了以Y2O3为烧结助剂的AlN陶瓷体的高压烧结.用XRD对AlN高压烧结体的相组成进行了表征.研究表明:高压制备陶瓷体材料能够有效降低烧结温度和缩短烧结时间,可比传统烧结方法降低400℃以上.Y2O3是AlN有效的低温烧结助剂,在1300℃、1400℃烧结的AlN陶瓷体材料第二相物质以YAlO3和 Y4Al2O9为主.当烧结温度高于1600℃,AlN陶瓷的第二相物质主要以Y3Al5O12为主.烧结条件为5.0GPa/1700℃/75min,样品的热导率可达135W/(m·K).  相似文献   

7.
以钛酸四丁酯、乙酸钡和乙醇为原料,分别以Fe(N O 3)3.9H 2O和La(N O 3)3.6H 2O为Fe3+和La3+源。按照化学配比式(Ba1-3xLa2x)(Ti1-3xFe4x)O 3(x=0.0025、0.005、0.0075、0.01)的要求设计试样组成。采用溶胶-凝胶法制备了Fe3+/La3+共同掺杂BaTiO 3粉体。分析讨论了工艺参数(pH、温度)对掺杂La3+/Fe3+BaTiO 3溶胶凝胶体系的影响。在1250~1300℃烧结(Ba1-3xLa2x)(Ti1-3xFe4x)O 3陶瓷,发现随着掺杂量的增加,相应的烧结温度随之上升。用TEM、SEM、X R D等手段对微观结构和组成进行了分析。组成为(Ba0.9925La0.005)(Ti0.9925Fe0.01)O 3时,在1260~1280℃烧结2h下,可以使得致密度较高;颗粒粒径在1μm左右,在0~80℃温度范围内1,kH z测试频率下可以获得介电系数为2800,电容变化率△C/C25℃为1%的BaTiO 3陶瓷。  相似文献   

8.
张枫  徐庆  陈文  黄端平  刘韩星  周建 《陶瓷学报》2006,27(4):352-357
采用溶胶-凝胶法合成了Ba_(0.6)Sr_(0.4)TiO_3/MgO复合粉体,研究了烧结温度和合成工艺对陶瓷样品介电性能的影响。研究结果表明,经650℃热处理即可得到颗粒细小均匀的超细Ba_(0.6)Sr_(0.4)TiO_3/MgO粉体,平均粒径在200 nm左右。烧结温度对陶瓷样品的介电生能有明显的影响,1300℃烧结的陶瓷样品具有优良的性能。与二步合成工艺相比,一步合成工艺制备的陶瓷样品具有更好的介(?)性能。  相似文献   

9.
水热法制备纳米镍锌铁氧体粉体及其磁性能   总被引:1,自引:0,他引:1  
用水热法分别在200℃和220℃下反应5h制备了纳米级镍锌铁氧体(Ni0.5Zn0.5Fe204)粉体.用X射线衍射(X-ray diffraction,XRD)分析合成的纳米Ni0.5Zn0.5Fe2O4的物相,结果表明:200℃水热反应5h得到的纳米Ni0.5Zn0.5Fe2O4粉体中含有γ-Fe2O3,220℃水热反应5h可以得到纯纳米Ni0.5Zn0.5Fe2O4粉体.用透射电镜(transmission electron microscope,TEM)、M(o)ssbauer谱(M(o)ssbauer spectroscopy,MS)、Fourier红外分析(Fourier transform infrared spectroscopy,FTIR)、振动样品磁强计(vibrating sample magnetometer,VSM)等方法表征纯纳米Ni0.5Zn0.5Fe2O4粉体.TEM结果表明:纳米Ni0.5Zn0.5Fe2O4粉体粒子为球形,粒径约为20nm.室温MS结果表明:大部分纳米Ni0.5Zn0.5Fe2O4粉体粒子表现出铁磁性,少量的表现出超顺磁性.FTIR分析表明:样品在577 cm-1和420 cm-1处出现NiZn铁氧体的特征峰.磁滞回线结果表明:纳米Ni0.5Zn0.5Fe2O4粉体粒子的饱和磁化强度为38.14A·m2/kg,剩磁为17.32A·m2/kg,矫顽力为29 275.29A/m.  相似文献   

10.
溶胶-凝胶法制备巨介电常数材料CaCu3Ti4O12   总被引:3,自引:0,他引:3  
通过溶胶-凝胶法制备CaCu3Ti4O12干凝胶,再经700~900℃,6~10h预烧和950~1 100℃,16~20h烧结,成功制备了CaCu3Ti4O12粉体和CaCu3Ti4O12巨介电常数陶瓷材料.用X射线衍射、扫描电镜分别确定了样品的结晶性能和形貌.用阻抗分析仪在10~106Hz范围内测试了陶瓷样品的介电性能.结果表明:粉体的结晶性能与煅烧温度有关,陶瓷介电性能与其晶粒大小有关.相对于传统固相反应合成法制备的粉体和陶瓷,粉体的预烧和陶瓷的烧结温度都有明显降低,烧成温度至少降低100℃.在800℃预烧的CaCu3Ti4O12粉体并在1 100℃温度下烧结制备的陶瓷,其介电常数可达194753.  相似文献   

11.
Zn–Mn–Ni–Oxide-based NTC thermistors with variable Ni/Mn ratios were fabricated from powder mixtures of recycled IZC, and commercial MnCO3 and NiCO3. Solid phases and electrical resistivity of each sintered sample were studied as a function of Ni/Mn ratio, sintering temperature and sintering time. At 1200 °C for 2 h, samples with the Ni/Mn ratios of 0.38 and higher were found to consist of cubic spinel as a major phase. After sintering at 1250 °C for 10 h, densification proceeded with a phase change from cubic spinel to tetragonal one. The electrical resistivity of the samples obtained at 1200 °C for 2 h progressively decreased with an increasing Ni/Mn ratio up to 0.38, at which the value became the lowest (4.2 × 103 Ω cm at room temperature) of all the samples fabricated.  相似文献   

12.
采用粉末冶金固相烧结法制备了NiFe2O4铁氧体粉体。对NiFe2O4粉体试样进行了DTA分析,研究了不同配比的NiO和Fe2O4粉末在980℃和1100℃烧结温度下的情况,对产物进行了XRD和SEM分析,结果表明:随着温度的升高(980~1100℃),烧结粉末的分散性越来越好,纯度也越来越高,NiFe2O4陶瓷粉体也逐渐显示出明显的尖晶石形貌。本研究制备尖晶石NiFe2O4陶瓷粉体的最佳工艺条件是:1100℃左右,时间为6h最好。  相似文献   

13.
以Si粉和Al2O3空心球为原料,采用反应烧结后高温烧结法制备了多孔β-sialon/Si3N4陶瓷。X射线衍射结果表明:在0.25MPa的氮气压力下于1300℃反应烧结2h后在0.25MPa的氮气压力下1700℃及1750℃高温烧结2h,制备的样品的组成为β-sialon(Si6-zAlzOzN8-z,z=3)及β-Si3N4,随着烧结温度由1700℃升高至1750℃,β-sialon的相对质量分数由29.9%增加至56.8%。场发射扫描电镜观察结果表明:1750℃高温烧结样品的显微结构由大孔β-sialon及疏松的β-Si3N4基体组成。1750℃高温烧结后,样品的气孔率为28%,抗弯强度为92.5MPa。  相似文献   

14.
以碳热还原法生产的AlN粉体为原料,用国产六面顶压机,在5.0GPa,1 300~1 800℃,在无烧结助剂的情况下,高压烧结制备了AlN陶瓷.用X射线衍射、扫描电镜对高压烧结AlN陶瓷微观结构进行了表征.结果表明:经1 300℃烧结50 min制备的AlN陶瓷的相对密度达94.8%.经1 400℃烧结50min制备的AlN陶瓷的断裂模式为穿晶断裂.经1 800℃烧结50min制备的AlN陶瓷由单相多晶等轴晶粒组成,该样品的热导率达115.0W/(m·K).高压烧结制备的AlN陶瓷的晶格常数比AlN粉体的略有减小.高压烧结温度的提高和烧结时间的延长有助于提高AlN陶瓷的热导率.  相似文献   

15.
以传统固相法制备的0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)03(PNN-PZT)压电陶瓷粉体为原料,采用挤压成型工艺制备含Pt金属芯压电陶瓷纤维。以PbTi03作为保护粉体,对纤维坯体进行1200℃不同时间(0.5、1.0h和2.0h)的烧结处理。利用X射线衍射仪、扫描电子显微镜、阻抗分析仪和铁电分析仪等研究了烧结时间对纤维微观结构、压电性能和铁电性能的影响。结果表明:在烧结时间范围内制备的压电陶瓷纤维为单一钙钛矿结构,未发现焦绿石相或其他杂相;随烧结时间增加,陶瓷纤维晶粒尺寸增大,压电和铁电性能明显提高。在1200℃保温2.0h制备的压电陶瓷纤维电学性能较好,压电常数(西1)、相对介电常数(曲、介电损耗(tanδ)和矫顽场(&)分别为-145pC/N、3313、2.6%和0.27kV/mm。介电温谱结果表明:该陶瓷纤维的特征Curie温度为125℃,峰值相对介电常数为8093。  相似文献   

16.
以α-Si3N4粉末为原料,分别以Y2O3-La2O3和Y2O3-CeO2为烧结助剂,利用热压烧结法制备了Si3N4陶瓷。研究了Si3N4陶瓷样品在空气中高温下的氧化行为。结果表明:原始的α-Si3N4在烧结过程中完全转化为β-Si3N4。在1000~1350℃氧化100h后,用Y2O3-La2O3烧结助剂制备的样品表现为质量增加趋势,质量变化小于0.389mg/cm2,其氧化过程符合抛物线规律。用Y2O3-CeO2烧结助剂制备的样品,在1000℃氧化后表现为质量减小,为-0.248mg/cm2;在1230℃和1350℃表现为质量增加,分别为0.024mg/cm2和0.219mg/cm2,并且其氧化过程不符合抛物线规律。样品的氧化过程主要受2个扩散过程的控制,即稀土元素的向外扩散与氧的向内扩散。  相似文献   

17.
纳米SiC陶瓷的超高压烧结研究(英文)   总被引:1,自引:0,他引:1  
以纳米SiC为原料,用两面项压机在不同工艺条件下(1 000~1 300℃,4.0~4.5 GPa,15~35 min)实现了40(质量分数,下同)Al2O3烧结助剂添加的SiC陶瓷体的烧结.研究了烧结工艺对SiC陶瓷性能的影响.用X射线衍射、扫描电镜、显微硬度测试仪等对SiC高压烧结体进行了表征.结果表明:Al2O3是有效的低温烧结助剂,在超高压工艺下添加4%Al2O3即可实现SiC陶瓷全致密化烧结;烧结体晶粒长大得到抑制,维持在纳米级,晶格常数收缩了约0.45%;烧结体显微硬度和密度随烧结温度、烧结压力的升高或保温时间的延长而提高.  相似文献   

18.
以α-Si3N4粉为原料,纳米级Y2O3和Al2O3为烧结助剂,采用气压烧结工艺制备氮化硅陶瓷球,研究了烧结温度对陶瓷球显微结构及力学性能的影响.结果表明,随着烧结温度的升高,陶瓷球的维氏硬度和压碎强度先提高后降低,断裂韧性不断提高.烧结温度为1780℃的陶瓷球综合力学性能最佳,其相对密度达到了99%,维氏硬度、断裂韧...  相似文献   

19.
以SnO2、Ta2O5和ZnO粉为原料,通过传统陶瓷固相反应烧结法制备了压敏变阻材料,实验中ZnO含量为0~2.00%(摩尔分数),烧结温度控制在1 300~1500℃并保温2 h。研究了ZnO掺杂量和烧结温度对材料的组成、微观结构和电学性能的影响。结果表明:在温度一定条件下,随着ZnO掺杂量的增加,材料的非线性系数、压敏电压先增大后减小;在ZnO含量一定时,随着烧结温度从1 300℃升至1 450℃,材料的非线性系数、压敏电压先增大后减小。ZnO掺杂量为0.50%时,在1450℃烧结得到的样品的非线性系数最高(6.2),漏电流最小(262μA/cm2),压敏电压较高(83V/mm)。  相似文献   

20.
金彪  汪潇  ?盍羲? 《硅酸盐通报》2017,36(4):1187-1192
以BaCO3和TiO2粉末为原料,采用传统固相反应法制备Ba2Ti9O20陶瓷.以BiCl3、Zn(NO3)2 、H3BO3溶液为前驱液,通过液相法引入Bi2O3-ZnO-B2O3(BZB)助烧剂以降低Ba2Ti9O20陶瓷的烧结温度代替直接混合Ba2Ti9O20和BZB粉末.结果表明,液相法引入0.3 mol/L BZB溶液,1150 ℃烧结3 h所得Ba2Ti9O20陶瓷介电性能最佳(εr=37,Qf=23485 GHz),优越于固相混合法所得最佳介电性能(εr=34, Qf=16985 GHz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号