首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prepulse inhibition (PPI) of the acoustic startle response (ASR) is impaired by dopamine (DA) overactivity in the nucleus accumbens and anteromedial striatum. Since there is evidence that DA in the medial prefrontal cortex exerts an inhibitory control on striatal DA systems, it was investigated whether depletion of prefrontal DA reduces PPI. Rats were tested for PPI both before and after injections (2 × 1 µl per side) of vehicle, a low (3.0 µg/µl) or a high (6.0 µg/µl) dose of 6-hydroxydopamine hydrobromide (6-OHDA) into the prefrontal cortex. Only the high dose of 6-OHDA, leading to an 87% depletion of prefrontal DA, impaired PPI. The ability of an acoustic prepulse (75 dB, 10 kHz) to reduce the response to a startle pulse (100 dB noise burst) was maintained in sham lesioned rats, but was significantly disturbed in rats lesioned with the high dose of 6-OHDA. The 6-OHDA treatment did not affect the ASR amplitude in the absence of a prepulse. The reduction of PPI in lesioned rats correlated with the extent of DA depletion. These results suggest that the DA innervation of the prefrontal cortex is involved in the modulation of the ASR and they provide further evidence for opposite actions of prefrontal and subcortical DA systems in the control of behaviour. The present findings are discussed with regard to the potential role of prefrontal DA in schizophrenia.  相似文献   

2.
These experiments examined the role of dopamine-opiate interactions in the ventral tegmental area (VTA) and nucleus accumbens in the mediation of reinforcement-related behaviour. It has been shown previously that opiates induce a dopamine-dependent increase in locomotor activity in rats when infused into the VTA, and a dopamine-independent hyperactivity when infused into the nucleus accumbens. The present study investigated the generality and significance of these two findings, by examining dopamine-opiate interactions in the control over behaviour exerted by a conditioned reinforcer (CR), an arbitrary stimulus which gains control by association with primary reinforcement. Rats were trained to associate a light/noise stimulus with sucrose reinforcement, and the efficacy of the CR in controlling behaviour was assessed by measuring its ability to support a new lever pressing response. Responding on one lever (CR lever) produced the CR, responding on the other lever had no programmed consequences. In experiment 1, intra-accumbens infusions ofd-amphetamine (10 µg), the D1 dopamine receptor agonist SKF-38393 (0.1 µg), the D2 dopamine receptor agonist LY-171555 (quinpirole; 0.1 µg) or the opiate receptor agonist [d-Ala2]-methionine enkephalinamide (DALA; 1 µg) selectively increased responding on the CR lever. Infusion with DALA intra-VTA had no effect. However, pretreatment with DALA intra-VTA (10 × 1 µg/day) subsequently reduced the selectivity of the response to infusions intra-accumbens withd-amphetamine or SKF-38393, and blocked the response to LY-171555 or DALA. Pretreatment also shifted to the right the dose-response function for DALA intra-accumbens. In experiment 2, intra-accumbens infusions ofd-amphetamine, SKF-38393, LY-171555 or DALA again increased responding on the CR lever only. Pretreatment with intra-accumbensd-amphetamine (5 × 1 µg/day) reduced the selectivity of the response subsequently tod-amphetamine, and blocked the response to SKF-38393, LY-171555 or DALA. In experiment 3, intra-accumbens infusions of the -opiate receptor agonist [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (0.003–0.1 µg), or the -opiate receptor agonist [d-Pen2, 5]-enkephalin (0.03–1 µg) enhanced selectively responding on the CR lever. Thus, the dopamine-dependent locomotor-stimulant properties of intra-VTA infusions of opiates are associated with impaired conditioned reinforcer efficacy. Finally, repeated stimulation of the mesoaccumbens dopamine pathway may compromise the dopamine-independence of the opiate system within the nucleus accumbens.  相似文献   

3.
Previous research has demonstrated that concurrent systemic administration of CB1 cannabinoid and mu-opioid receptor agonists increases feeding in rats. However, the possible neural loci of this cooperative effect have yet to be identified. These studies tested whether the nucleus accumbens shell may be one site of the interactive effects of opioid and cannabinoid ligands on feeding. Injection of the mu-opioid agonist DAMGO (at 0, 0.025, 0.25, or 2.5 µg/0.5 µl/side) directly into the rat nucleus accumbens shell increased feeding on a sweetened-fat diet, and this effect was blocked by pretreatment with either the mu-opioid antagonist naltrexone (20 µg/0.5 µl/side) or the CB1 antagonist SR141716 (0.5 µg/0.5 µl/side). Activation of nucleus accumbens shell CB1 receptors with WIN55212-2 alone (at 0.1 or 0.5 µg/0.5 µl/side) had no apparent effect on food intake. However, local injections of the low dose of DAMGO (.025 µg/0.5 µl/side) in this region along with WIN55212-2 (at 0.25 or 0.50 µg/0.5 µl/side) increased feeding above that induced by DAMGO alone. These data suggest an important modulatory role for cannabinoid receptors in the expression of feeding behaviors in response to mu-opioid receptor activation of the nucleus accumbens shell.  相似文献   

4.
The mesolimbic dopamine (DA) system was lesioned by the injection of 6-hydroxydopamine into the nucleus accumbens or ventral tegmental area of rats. The rats were then examined in a photocell apparatus for their response to injection with the enkephalin analogue, D-Ala2-Met5-enkephalinamide (DALA), into the nucleus accumbens. Rats with DA lesions showed a significantly greater increase in photocell counts in response to DALA than did sham-lesioned animals. The potentiated motor response was dose-related, and rats having the greatest depletion of DA in the nucleus accumbens showed the greatest behavioral response to DALA. It was concluded that chronic impairment of dopaminergic innervation to the nucleus accumbens results in an enhanced response to DALA injected directly into the nucleus accumbens.  相似文献   

5.
RATIONALE: Previous studies indicate that the D(3) dopamine (DA) receptor is preferentially expressed in limbic forebrain DA terminal areas and may mediate functional effects opposite those of the D(1) and D(2) receptor types. However, the locations of the D(3) receptors that regulate behavior, and the range of behavioral functions regulated, are not clear. OBJECTIVE: The objective of this study was to evaluate behavioral and cellular effects of the preferential D(3) dopamine receptor antagonist, U99194A. METHODS: In experiment 1, the rewarding effect of U99194A (5.0, 10.0 and 20.0 mg/kg, SC) was measured in terms of its ability to lower the threshold for lateral hypothalamic self-stimulation (LHSS) in ad libitum fed rats. To amplify a possibly weak reward signal, testing was also conducted in food-restricted rats. The ability of U99194A to alter the threshold-lowering effect of d-amphetamine was also assessed. In experiment 2, effects of U99194A on horizontal and vertical motor activity were compared in ad libitum fed and food-restricted rats. In experiment 3, effects of a behaviorally active dose of U99194A (5.0 mg/kg) on brain c-fos expression were measured and compared to those produced by d-amphetamine (0.5 mg/kg, IP). In experiment 4, the motor and cellular activating effects of U99194A were challenged with the D(1) dopamine receptor antagonist, SCH-23390 (0.1 mg/kg). RESULTS: U99194A displayed no rewarding efficacy in the LHSS paradigm. U99194A did, however, augment the rewarding effect of d-amphetamine. U99194A also produced a motor activating effect, reversible by SCH-23390, which was greater in food-restricted than ad libitum fed rats. The pattern and intensity of fos-like immunoreactivity (FLI) induced by U99194A was similar to that produced by d-amphetamine and was blocked, in caudate-putamen and nucleus accumbens, by SCH-23390. CONCLUSIONS: These results indicate that U99194A has psychostimulant-like effects on motor activity and striatal c-fos expression that are dependent upon the D(1) DA receptor. However, doses of U99194A that are adequate to stimulate motor activity and c-fos expression in striatal and limbic structures do not possess direct rewarding effects in the LHSS paradigm. Overall, these results seem consistent with the hypothesis that D(3) antagonism enhances D(1)/D(2) mediated signaling with behavioral effects dependent on both the density of D(3) receptors and the prevailing level of DA transmission in particular brain regions.  相似文献   

6.
Neurotensin has neuromodulatory actions on multiple brain functions including motor, sensory and limbic processes. However, little is known about how neurotensin affects general arousal and/or attention states. The present study evaluated the effects of neurotensin on spontaneous brain activity as well as auditory evoked responses using electrophysiological measures. Electroencephalographic and event-related potential recordings were obtained in awake animals following intracerebroventricular administration of neurotensin (1.0, 10.0 and 30.0 µg). Twenty rats were implanted with recording electrodes in the frontal cortex, dorsal hippocampus, amygdala and nucleus accumbens. Neurotensin was found to produce a dose-related effect on behavior and electrophysiological measures. Lower doses (10 µg) produced no obvious behavioral changes, but significantly reduced EEG power in the lower frequency ranges (2–6 Hz) in the frontal cortex, the anterior amygdaloid complex and the nucleus accumbens. At higher doses (30 µg), rats appeared behaviorally inactivated, and EEG power was reduced in all structures in both the lower frequency ranges (2–6 Hz) and the higher frequency ranges (8–32 Hz). Auditory processing, as assessed by event-related potentials, was affected most significantly in amygdala and dorsal hippocampus. In the amygdala, the amplitude of the P3 component of the auditory event-related potential was increased significantly by doses of 10.0 and 30.0 µg. In the dorsal hippocampus, the amplitude and the area of the N1 component was increased dose dependently and significance was reached at the 30 µg dose. These electrophysiological findings indicate that neurotensin does not reduce the arousal level of the animals and in fact may enhance neurosensory processing in limbic areas through increased arousal and/or enhanced stimulus evaluation.  相似文献   

7.
Recent studies have demonstrated the existence of two distinct regions within the nucleus accumbens (N.Acc) known as core and shell. In order to investigate whether the behavioral functions of excitatory amino acid receptors differed between these two subregions, rats were administered microinjections of 2-amino-5-phosphonovaleric acid (AP-5), a competitive NMDA antagonist (0, 0.05, 0.2, 0.5, 1.0 µg/0.5 µl) into selected central and medial regions of the accumbens. The central and medial sites were assumed to correspond approximately to core and shell subregions, respectively. The animals were tested in two exploratory tasks: the open field and a novel object test. In the open field test, AP-5 significantly decreased peripheral locomotion and center rearing frequency in the central but not the medial group. Locomotion and rearing were not affected by AP5 infusion into a control site, the anterior dorsal striatum (ADS). In the novel object test, animals were tested in the same open field, with prior habituation, and with several novel objects placed within it. In this test, infusions of AP-5 (0, 1.0 µg/0.5 µl) decreased the number and duration of contacts with the novel objects in the central but not the medial group. In addition, peripheral and center locomotion were decreased by AP-5 infusions into the central site, whether objects were present or not. In contrast, AP-5 infusions into the medial site elicited an increase in peripheral locomotion in both stimulus conditions. These findings provide behavioral-pharmacological evidence that the central and medial subregions of the nucleus accumbens can be differentiated. Moreover, the results suggest that exploratory motor responses may be dependent on glutamate-coded input to the nucleus accumbens area corresponding to the core region.  相似文献   

8.
Dopamine (DA) D1 and D2 receptors are involved in mediating the behavioral effects of cocaine, including its discriminative stimulus properties. The purpose of the present study was to investigate the role of the nucleus accumbens and, in particular, accum bens DA D1 receptors in modulating the stimulus effects of cocaine. Thus, rats were trained to discriminate cocaine (10 mg/kg, IP) from saline using a two-lever, water-reinforced FR 20 drug discrimination task. In substitution tests, systemic (IP) administration of cocaine (0.625–20 mg/kg) produced a dose-related increase in cocaine-appropriate responding. Microinjections of cocaine (2.5–40 µg) into the nucleus accumbens also engendered dose-dependent and complete substitutions (> 80% drug-lever responding) for the systemic training dose of cocaine, whereas intra-accumbens artificial cerebrospinal fluid (1 µl/side) produced primarily saline-appropriate responding. In antagonism tests, pretreatment with the DA D1 antagonist SCH 23390 (3–12 µg/kg) completely antagonized (<20% drug-lever responding) a dose of cocaine (5 mg/kg) that produced greater than 90% cocaine-lever responding when given alone. Additionally, intra-accumbens injections of SCH 23390 (0.025–0.4 µg) prior to systemic cocaine (5 mg/kg) also significantly blocked the cocaine stimulus. The present results confirm the importance of the nucleus accumbens in mediating the discriminative stimulus properties of cocaine and suggest a primary role of accumbens DA D1 receptors in modulating this behavior.Some of these data were presented at the annual FASEB Experimental Biology meeting in New Orleans (1993)  相似文献   

9.
The effect of 6-OHDA injections into the nucleus accumbens was examined on cocaine self-administration behaviour. Rats were given access to cocaine (0.75 mg/kg/inj.) for three hours/day on a continuous reinforcement schedule. After daily intake of cocaine had stabilized, rats were injected with 6-OHDA (8 μg/2 μl). When tested the day following the 6-OHDA injection most rats failed to self-administer cocaine, however this disruption did not resemble extinction. After several days self-administration recovered in many animals to near preoperative levels, and the rate of this recovery correlated (r = +0.75) with the levels of dopamine remaining in the nucleus accumbens. The animals with the greatest depletion of dopamine did not recover cocaine intake. In a separate experiment, animals were pretreated with desmethylimipramine and/or pargyline to achieve a more extensive and selective lesion. When tested five days after the lesion all animals in these 6-OHDA groups showed a significant decline in cocaine intake compared to vehicle injected control animals. Several 6-OHDA treated animals displayed a pattern of behaviour resembling extinction, where a high rate of lever pressing was followed by cessation of responding. Some animals were aalso tested for apomorphine self-administration and this was found not to be affected by the 6-OHDA treatment. These data support the hypothesis that non-striatal dopamine may subserve cocaine reward.  相似文献   

10.
A number of studies have shown that intracisternal, intracerebroventricular, or direct administration of neurotensin (NT) into the nucleus accumbens (ACC) can antagonize the arousal and excitement produced by activation of the mesolimbic dopamine (DA) system of rats. This study investigated where NT acts relative to DA neurons to exert this antagonistic effect. In this study we selectively removed the majority of limbic forebrain DA terminals by bilateral administration of 6-hydroxydopamine (6-OHDA) into the anterolateral hypothalamus of desipramine-pretreated rats. The 6-OHDA-treated rats subsequently developed DA receptor supersensitivity, as evidenced by behavioral supersensitivity to L-DOPA. The L-DOPA dose employed was subthreshold for behavioral excitation in control rats. The behavioral excitation to L-DOPA in 6-OHDA-treated rats consisted of increases in sniffing and increases in locomotion and/or rearing, along with decreases in resting and sleep. Following bilateral intra-ACC injections of NT, L-DOPA-induced sniffing, rearing, and locomotion decreased significantly, and resting and sleep increased significantly. These data suggest that intra-ACC NT, acting in or proximal to the ACC, can antagonize the behavioral effects of limbic DA stimulation and that this antagonism is postsynaptic to DA neurons.  相似文献   

11.
The mesolimbic dopamine (DA) system, originating in the ventral tegmental area and projecting to limbic forebrain regions, plays a crucial role in mediating several important aspects of behaviour. Proximal to these DA neurons are enkephalin-containing nerve fibers. In an attempt to characterize the behavioural role of enkephalinergic transmission in the VTA, the present experiment examined in detail the investigatory and motor responses to microinfusion of d-ala-met-enkephalin (DALA), a long lasting analogue of enkephalin, into the ventral tegmental area (VTA). Injections into the substantia nigra (SN) and the hippocampus (HPC) were also performed as controls for site specificity. The behavioural apparatus consisted of an eight-hole box monitored by a video camera. Four doses of DALA were injected in the VTA (0.05, 0.1, 1 and 2.5 g/l bilaterally in 1 l volume) and one dose in the SN and HPC (0.1 g/l bilaterally in 1 l volume). The effect of DALA injections in the VTA was characterized by an inverted U-shape dose-effect curve. The low doses (0.05 and 0.1) induced an increase in the frequency of hole visits accompanied by a decrease in the mean duration of visits, whereas the highest doses induced a decrease in hole visit frequency. Low doses of DALA had no effect on strategy or organization of exploration, whereas the high doses produced decreased switching between holes. After low doses of DALA, locomotor activity at the periphery of the testing box was not significantly affected but locomotor activity in the centre was increased. After high doses of DALA, locomotor activity in the center and at the periphery of the box were decreased. Frequency of rearing was either not affected or decreased by DALA treatment. DALA injected in the SN resulted in a small increase in frequency of hole visits and did not affect rearing and locomotor activity. DALA injection in the HPC had no effect on investigatory and spontaneous motor behaviour. The results are discussed in terms of a modulatory role of endogenous enkephalin on mesolimbic dopamine neurons.  相似文献   

12.
Depression is a frequent comorbid disorder in Parkinson's disease (PD) which may precede appearance of its motor symptoms by several years. Pathomechanisms underlying PD have been suggested to be responsible for the PD-related depression. The aim of the study was to examine the influence of a partial lesion of striatal dopaminergic terminals on the "depressive-like" behavior of rats in the forced swimming test (FS). 6-Hydroxydopamine (6-OHDA) was injected bilaterally into the ventro-lateral region of the caudate-putamen (CP) (3.75 μg/2.5 μl/side). The locomotor activity and behavior of rats in the FS were measured 2 and 4 weeks after the operation. The lesion extent was analyzed by biochemical and immunohistochemical methods. Two weeks after the operation, the 6-OHDA-treated rats displayed a prolonged immobility in the FS. This effect disappeared after 4 weeks. The locomotor activity was not influenced by 6-OHDA. Levels of dopamine, DOPAC and HVA were decreased in the nucleus accumbens (NAC) 2 weeks after 6-OHDA but were not changed in the CP, frontal cortex (FCX) and substantia nigra (SN). No significant effect of 6-OHDA on tyrosine hydroxylase-immunoreactivity in the CP and NAC were found. The present study indicates that a relatively small lesion of dopaminergic terminals in the ventral striatum, which does not produce any motor disturbances, may induce "depressive-like" symptoms.  相似文献   

13.
Enkephalinergic and dopaminergic mechanisms have been implicated in the electrical self-stimulation (SS) behavior. The present set of experiments investigated the role of opioid receptors within DA-innervated brain regions (nucleus accumbens and ventral tegmental area) in the ventral pallidum self-stimulation (VP-SS). Forty-one rats used in this study were implanted with a monopolar moveable stimulating electrode in the VP. A rate-frequency curve-shift method was applied to determine the reward (threshold) and motor functions (asymptotic rate) of self stimulation elicited from the VP. One group received systemic treatment of graded doses (vehicle; 1.25; 2.50 mg/kg) of morphine injected IP, 60 min before behavioural testing. The results showed a tendency for increased threshold of VP-SS and of the asymptotic rate of responding. Three additional groups were implanted with guide cannulae in the nucleus accumbens (NAC), the ventral tegmental area (VTA) or dorsally to the VTA and received microinjections of morphine (vehicle; 1.25; 2.50; 5.0; 10.0 μg/0.5 μl per side). Central injections of morphine higher than 1.25 μg/side into the VTA were associated with a significant reduction in VP-SS thresholds, indicating a potentiative effect on reward. Microinjections of morphine either into the NAC or into the dorsal tegmentum did not produce significant alterations on thresholds or responding of VP-SS. In order to investigate the extent to which the VTA-NAC dopamine projection was involved in the SS behavior elicited from the ventral pallidum, we tested SS in animals that suffered NAC 6-hydroxydopamine (6-OHDA) lesions. Rats suffering NAC dopamine depletion along with their corresponding controls showed similar levels of thresholds and responding to the ones exhibited prior to the lesion, revealing that NAC dopamine is not necessary to maintain VP-SS. The results suggest that stimulation of opioid receptor in the VTA increases the rewarding efficacy of VP-SS. This effect might be due to the modulation of VTA-DA neurons projecting to the VP rather than to the NAC. Received: 22 August 1997 / Final version: 23 December 1997  相似文献   

14.
The administration to rats of different doses of the non competitive NMDA receptor blocker MK-801 (0.03–1 mg/kg IP) induced stimulation or reduction of locomotor activity, depending on the dose, whereas the competitive NMDA antagonists CGP 43487 (0.188–6 mg/kg IP) and APV (2.5–20 g/rat ICV) inhibited locomotion at the highest doses. Unlike MK-801 and APV treatment, the administration of CGP 43487 did not induce impairment of rota-rod test performance. Both competitive and non-competitive NMDA antagonists, at doses devoid of any behavioral effect per se, potentiated the responses elicited by apomorphine (0.25 mg/kg SC). In particular, the occurrence of episodes of licking was weakly affected by MK-801 administration, but significantly increased by CGP 43487 and APV treatment; the presence of gnawing was augmented by all the pretreatments; sniffing, locomotion, grooming and rearing occurrence were not affected by the administration of NMDA antagonists. The results suggest that the competitive antagonists which facilitated dopaminergic function without causing motor impairment could be useful supplements in the treatment of Parkinson's disease.  相似文献   

15.
Microinjections ofd-amphetamine (5.0, 10.0 and 20.0 µg/0.5 µl) into the nucleus accumbens caused reliable dose-dependent circling away from the side of injection. Injections ofl-amphetamine were not effective, ruling out non-specific effects of pH, osmolarity and the like and also ruling out noradrenergic actions as explanations of the behavioral effects. Injections ofd-amphetamine into the ventral caudate were less potent than those into the nucleus accumbens, suggesting nucleus accumbens rather than more dorsal tissue as the site of this behavioral effect. These data suggest that asymmetrical activation of the nucleus accumbens is a sufficient condition to induce circling behavior and raise questions for the commonly accepted view that asymmetrical activation of the caudate is a necessary condition for dopamine dependent circling behavior.  相似文献   

16.
Previous studies showed that treatment with high doses of amphetamine (8.0 mg/kg) administered according to an escalating dose-binge regimen, produced a unique behavioral profile that included a decrease in the duration of stereotypy and a pronounced increase in ambulation, characterized by a repeated bursting pattern of locomotion. This treatment regimen also resulted in differential dopamine response profiles in the caudate-putamen and nucleus accumbens: the dopamine response in the caudate-putamen exhibited a progressive within and between binge decline in peak levels, whereas the dopamine response in the nucleus accumbens was not significantly altered. The present study was designed to determine if this behavioral/dopamine response relationship was obtained under two additional conditions: first, in response to a relatively low dose amphetamine challenge (2.5 mg/kg) after withdrawal from escalating dose-binge treatment with either amphetamine or methamphetamine (6.0 mg/kg), and, second, during a lower dose (2.5 mg/kg amphetamine) escalating dose-binge regimen. Both the emergent behavioral profile and the regional differences in the dopamine response patterns were obtained under each set of conditions. These effects may be significantly implicated in the induction of stimulant psychosis, since the psychotogenic effects of amphetamine-like stimulants are most commonly associated with frequent, relatively high dose binge exposures. Received: 12 May 1998/Final version: 29 July 1998  相似文献   

17.
Three experiments examined the behavioural, pharmacological and neural specificity of the previously reported potentiation of responding with conditioned reinforcement following intra-accumbensd-amphetamine, by studying the effects of intraaccumbens dopamine (DA) and noradrenaline, using an acquisition of a new response procedure. In experiment 1, the effects of intra-cerebral DA infusions (5, 20, 50 µg/2 µl) were compared in four conditions: (i) intra-accumbens DA following positive pairing of the conditioned stimulus (CS) and water during training; (ii) as (i) but also following a systemic dose of the DA receptor antagonist alpha-flupenthixol; (iii) intra-accumbens DA following random pairing of the CS and water during training; and (iv) as (i) but with intra-caudate rather than intra-accumbens DA. The results showed that only with intra-accumbens DA in the positive pairing condition was there a significant dose-dependent increase in responding. In experiment 2, the effects of a higher range of doses (20, 100, 200 µg) and smaller infusion volume (5, 25, 50 µg/l µl) of intra-accumbens DA were studied, in comparison with a similar range of doses (5, 25, 50 µg/l µl) of intra-accumbens noradrenaline (NA). Only DA produced a selective, dose-dependent increase in responding with conditioned reinforcement. In experiment 3 neurotoxic lesions of the dorsal noradrenergic bundle (DNAB) using 6-hydroxydopamine producing profound (about 90%) depletion of cortical and nucleus accumbens NA levels had no effect on the increased responding with conditioned reinforcement produced by intra-accumbensd-amphetamine (3, 10, 30 µg/l µl). The results are discussed in terms of the neurochemical mediation of the potentiation of the effects of conditioned reinforcers byd-amphetamine and the role of DA-dependent mechanisms of the nucleus accumbens in reward-related processes.  相似文献   

18.
We investigated modification of the MK-801 effect on motor activity and extracellular amines concentration by 6-hydroxydopamine (6-OHDA)-induced lesion of core nucleus accumbens (cACC) of rats. In vivo microdialysis-HPLC showed that the concentrations (fmol/microl) of dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and serotonin were 0.738 +/- 0.135, 155.34 +/- 41.01 and 0.334 +/- 0.024, respectively, in the cACC of intact rats. The DOPAC/DA ratio was 264.24 +/- 94.01. Unilateral lesion of the cACC with 6-OHDA (8 microg/microl) substantially reduced DA (-93%) and DOPAC (-97%) in desipramine (30 mg/kg, i.p.)-pretreated rats (6-OHDA+DMI rats) as compared to the 65% reduction rate of both amines in saline-pretreated rats (6-OHDA+saline rats). Moreover, DOPAC was reduced by 72% in 6-OHDA+DMI rats. MK-801 increased DOPAC (426-467%) and DOPAC/DA ratio (180-230%) in intact rats. On the other hand, MK-801 increased DA by 154% and 505% in 6-OHDA+saline and 6-OHDA+DMI rats, respectively. 6-OHDA reduced the effect of MK-801 on DOPAC and DOPAC/DA ratio. In the behavioral studies, MK-801 (0.01-0.3 mg/kg, i.p.) increased locomotor activity and rearing of intact rats. Bilateral 6-OHDA+DMI lesion of the cACC caused greater reduction in the effect of MK-801 (0.1 mg/kg) than that of the shell nucleus accumbens. These results suggest that increased extracellular DOPAC concentration (but not DA) and DOPAC/DA ratio in the cACC plays an important role in MK-801-hyperactivity.  相似文献   

19.
The involvement of dopamine D1 receptor systems in the reinforcing properties of opiate reward was studied by examining the effect of the dopamine D1 antagonist SCH23390 on the initiation of heroin self-administration in rats. The D1 antagonist was administered daily systemically or locally in the nucleus accumbens (NAC), after which the animals were allowed to self-administer heroin (IV) in a 3-h session for 5 consecutive days. Systemic treatment with SCH23390 (0.17 and 0.5 mg.kg–1) significantly decreased heroin intake during initiation of heroin self-administration, while a dose of 0.06 mg.kg–1 was not effective. Local administration of SCH23390 (0.5 and 2.5 µg/site) in the NAC did not affect heroin intake. Both systemic and intra-accumbal administration of SCH23390 dose dependently decreased motor behavior measured in a small open field. The attenuation of heroin intake during initiation of heroin self-administration by blockade of dopamine D1 receptor systems may be due to a decrease in the reinforcing effects of heroin or more likely to a reduction in non-reinforcement-related behavior. The dopamine D1 receptors present in the NAC are probably not involved in opiate reward.  相似文献   

20.
We have previously reported that selective dopamine (DA) D3 receptor antagonists are effective in a number of animal models of drug addiction, but not in intravenous drug self-administration, suggesting a limited ability to modify drug reward. In the present study, we evaluated the actions of S33138, a novel partially selective D3 receptor antagonist, in animal models relevant to drug addiction. S33138, at doses of 0.156 or 0.625 mg/kg (i.p.), attenuated cocaine-enhanced brain-stimulation reward (BSR), and the highest dose tested (2.5 mg/kg) produced a significant aversive-like rightward shift in BSR rate-frequency reward functions. Further, S33138 produced biphasic effects on cocaine self-administration, i.e., a moderate dose (2.5 mg/kg, p.o.) increased, while a higher dose (5 mg/kg, p.o.) inhibited, cocaine self-administration. The increase in cocaine self-administration likely reflects a compensatory response to a partial reduction in drug reward after S33138. In addition, S33138 (0.156-2.5 mg/kg, p.o.) also dose-dependently inhibited cocaine-induced reinstatement of drug-seeking behavior. The reduction in cocaine-enhanced BSR and cocaine-triggered reinstatement produced by lower effective doses (e.g., 0.156 or 0.625 mg/kg) of S33138 is unlikely due to impaired locomotion, as lower effective doses of S33138 decreased neither Ymax levels in the BSR paradigm, rotarod performance, nor locomotion. However, the higher doses (2.5 or 5 mg/kg) of S33138 also significantly inhibited sucrose self-administration and rotarod performance, suggesting non-D3 receptor-mediated effects on non-drug reward and locomotion. These data suggest that lower doses of S33138 interacting essentially with D3 receptors have pharmacotherapeutic potential in treatment of cocaine addiction, while higher doses occupying D2 receptors may influence locomotion and non-drug reward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号