首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyacrylonitrile (PAN) nanofibrous fabrics carrying gold nanoparticles (AuNPs) were prepared via the combination of electrospinning of PAN solution containing HAuCl4 and in situ gold formation induced by ultraviolet (UV) irradiation. The factors to control the diameter of AuNPs were first investigated, and then their applicability to catalytic reaction using the obtained fibers was presented. The initial contents of Au ranging from 3 to 21 wt% did not exert a significant effect on the size of AuNPs formed in/on the PAN fibers, giving 4.7–5.4 nm in diameter, for 5 days of UV irradiation. On the other hand, the sizes of formed AuNPs were found to change from 5.2 to 2.7 nm with varying UV irradiation time from 5 to 1 day. The first-order rate constants obtained for the reduction of 4-nitrophenol increased from 1.1 × 10?3, 3.5 × 10?3 to 4.0 × 10?3 s?1, under a fixed volume of the fibers with AuNPs as catalysts, with increasing content of Au from 3, 13 to 21 wt%. The PAN catalysts with decreased size of AuNPs obtained through 1 day of UV irradiation gave a higher rate constant of 2.7 × 10?2 s?1. The highest rate constant per Au content and turnover frequency obtained in this study were 8.3 × 10?2 s?1 μmol-Au?1 and 71 h?1, respectively.  相似文献   

2.
3.
Lai C  Guo Q  Wu XF  Reneker DH  Hou H 《Nanotechnology》2008,19(19):195303
This paper studies the mechanism of the formation of carbon nanostructures on carbon nanofibers with Pd nanoparticles by using different carbon sources. The carbon nanofibers with Pd nanoparticles were produced by carbonizing electrospun polyacrylonitrile (PAN) nanofibers including Pd(Ac)(2). Such PAN-based carbon nanofibers were then used as substrates to grow hierarchical carbon nanostructures. Toluene, pyridine and chlorobenzine were employed as carbon sources for the carbon nanostructures. With the Pd nanoparticles embedded in the carbonized PAN nanofibers acting as catalysts, molecules of toluene, pyridine or chlorobenzine were decomposed into carbon species which were dissolved into the Pd nanoparticles and consequently grew into straight carbon nanotubes, Y-shaped carbon nanotubes or carbon nano-ribbons on the carbon nanofiber substrates. X-ray diffraction analysis and transmission electron microscopy (TEM) were utilized to capture the mechanism of formation of Pd nanoparticles, regular carbon nanotubes, Y-shaped carbon nanotubes and carbon nano-ribbons. It was observed that the Y-shaped carbon nanotubes and carbon nano-ribbons were formed on carbonized PAN nanofibers containing Pd-nanoparticle catalyst, and the carbon sources played a crucial role in the formation of different hierarchical carbon nanostructures.  相似文献   

4.
Self-assembly of the phytohormone indole-3-acetic acid (IAA) was examined in aqueous solutions of varying pH values. Further, it was observed that IAA biomimetically reduced Au ions leading to the formation of Au nanoparticles at a pH range of 4-9. It was found that at a pH range of 4-7, uniform spherical gold nanoparticles in the size ranges of 20-30 nm were obtained, while under basic conditions, a high degree of aggregation was observed. In addition, we conjugated IAA with the organic linker 1,4-diaminobutane in order to enhance the attachment of Au ions to the IAA moiety via the free amino group and examined its self-assembly. In general, higher yields of nanofibers were formed upon self-assembly of the amide conjugate, with lengths in the micron range. Further, it was observed that the Au nanoparticles formed in the presence of the self-assembled amide conjugates were uniformly coated, leading to the formation of uniform gold nanowires. Thus, a new class of materials based on IAA and IAA-amide conjugates could be efficiently used for formation of gold nanoparticles using environmentally friendly mild synthetic methods in the absence of harsh reducing agents. Such materials may have potential applications in optoelectronics, bioimaging and sensing.  相似文献   

5.
In-situ growth of titania nanoparticles in poly (ethylene terephthalate) (PET) nanofibers has been successfully achieved by combining sol-gel method and electrospinning process. Titania precursor, tetra-n-butyl titanate (TBT), was firstly hydrolyzed in trifluoroacetic acid (TFA), and then blend with a solution of PET in mixture of trifluoroacetic acid/dichloromethane (TFA/DCM) to form a homogeneous solution for electrospinning. Titania nanoparticles in-situ generated in the electrospun nanofibers via a hydrothermal treatment process at 70 °C-90 °C. The morphology and crystallinity of PET/TiO2 hybrid nanofibers were investigated using TEM and DSC. The results showed that titania nanoparticles of anatase phase with an average diameter of about 10 nm in-situ generated both inside and on the surface of PET electrospun nanofibers. The reversible networks formed between titania nanoparticles and PET macromolecular chains led to considerable decrease of PET crystallinity.  相似文献   

6.
In this report, we demonstrate a novel way to tune the fluorescence property of electrospun conjugated polymer fibers. The basic strategy is to use a soluble precursor polymer with gold nanoparticles for electrospinning, which is then cross-linked by applying potential cycles in an electrochemical cell. Electroactive carbazole units in electrospun precursor polymer fibers were converted to conjugated polymer fibers. Since the conjugated polymer fibers can be formed, the fluorescence from the conjugated polymer fibers can be tuned by the rate of the conversion and doping of the fibers. Furthermore, the quenching of the fluorescence, which overlaps with the plasmon band of the gold nanoparticles, was observed. The quenching of the fluorescence properties of the fibers was dependent on the amount of gold nanoparticles inside the fibers.  相似文献   

7.
Formo E  Lee E  Campbell D  Xia Y 《Nano letters》2008,8(2):668-672
This paper reports a simple procedure for derivatizing the surface of anatase TiO2 nanofibers with Pt nanoparticles and then Pt nanowires. The nanofibers were prepared in the form of a nonwoven mat by electrospinning with a solution containing both poly(vinyl pyrrolidone) and titanium tetraisopropoxide, followed by calcination in air at 510 degrees C. The fiber mat was then immersed in a polyol reduction bath to coat the surface of anatase fibers with Pt nanoparticles of 2-5 nm in size with controllable density of coverage. Furthermore, the coated fibers could serve as a three-dimensional scaffold upon which Pt nanowires of roughly 7 nm in diameter could be grown at a high density and with a length up to 125 nm. The fiber membranes functionalized with Pt nanoparticles and nanowires are interesting for a number of catalytic applications. It was found to show excellent catalytic activity for the hydrogenation of azo bonds in methyl red, which could be operated in a continuous mode by passing the dye solution through the membrane at a flow rate of 0.5 mL/s.  相似文献   

8.
通过静电纺丝技术制备纯淀粉纳米纤维膜,并在密闭容器中和戊二醛蒸汽进行交联。利用环境扫描电子显微镜(ESEM)、傅里叶变换红外光谱(FT-IR)对纤维交联前后的表面形貌和结构进行观察和分析,通过电子万能材料拉伸试验机、接触角测试仪等考察了交联反应对纤维膜性能的影响。结果表明,戊二醛与淀粉分子之间发生了缩醛化交联反应,淀粉纳米纤维膜经戊二醛蒸汽交联后仍能较好的保留原纤维的形态,并且拉伸性能和耐水性能均得到一定程度的提高。  相似文献   

9.
Electrospun carbon nanofibers (ECNs) were prepared through stabilization and carbonization of electrospun polyacrylonitrile nanofibers as the precursor, and their morphological, structural, and electrical properties were evaluated. Temperature dependencies of resistivity of ECNs carbonized at several temperatures were investigated. The character of the temperature dependencies of resistivity was typical for semiconducting materials. The values of corresponding activation energies were obtained for ECN samples carbonized at different temperatures, and the results showed that the activation energy of ECNs decreased with the increase of carbonization temperature.  相似文献   

10.
Nonspherical metal nanoparticles are very attractive plasmonic nanostructures owing to the facile tunability of the plasmonic properties and the presence of sharp corners and edges, which act as electromagnetic hot spots for surface enhanced Raman scattering (SERS). However, such anisotropic nanostructures exhibit strong polarization dependence in their plasmonic properties, exhibiting significantly higher SERS intensity in certain orientations. In this paper, we demonstrate a facile strategy to achieve directed assembly of aligned gold nanorods using highly aligned electrospun nanofibers. We believe that the interstices between the nanofibers act as micro-and nanochannels, resulting in hydrodynamic drag forces on the gold nanorods, thus inducing massive alignment of the same on the nanofibers. Apart from exhibiting nearly 50 times higher SERS intensity compared to a planar SERS substrate with randomly oriented nanorods, our results highlight the importance of the orientation of anisotropic nanostructures. Finite difference time domain (FDTD) simulations employed to understand the electromagnetic field distribution around an aligned nanorod array showed excellent agreement with the experimental observations.  相似文献   

11.
In this study, CeO2 nanofibers and that doped with Eu3+ were prepared via a facile electrospinning route and annealed at different temperatures ranging from 500 to 900 °C. Their structures were investigated using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Photoluminescence properties of the nanofibers were studied in detail. It was found that the nanofibers with Eu% concentration of 0.67 mol.% and annealed at 700 °C exhibited the highest intensities of the luminescence peaks between 550 and 650 nm.  相似文献   

12.
Interactions of free-standing gold nanoparticles and hollow graphitized nanofibers in colloidal suspension are investigated, revealing the first example of the controlled arrangement of nanoparticles inside nano-containers, as directed by their internal structure. The ordering is highly effective for small gold nanoparticles whose sizes are commensurate with the height of graphitic step-edges in the graphitized carbon nanofibers and is less effective for larger gold nanoparticles. Studies aimed at understanding the role of the organic-solvent surface tension, employed for the filling experiments, demonstrate that gold nanoparticles become preferentially anchored into the hollow graphitized carbon nanofibers under a mixture of pentane/CO(2) in supercritical conditions. It is shown that a three-step cleaning procedure enables effective removal of gold nanoparticles adsorbed on the exterior surface of graphitized carbon nanofibers, while ordered arrays of encapsulated nanoparticles are retained.  相似文献   

13.
通过电纺纤维自组装制备了具有强磁性敏感性的Fe3O4@SiO2复合纳米颗粒.电纺纤维的形貌通过扫描电镜(SEM)进行表征。纳米颗粒的尺寸分布,形貌和磁性分别通过FESEM、TEM和VSM进行确定。结果显示,该复合纳米颗粒具有近似球形的结构,并且具有多个磁性内核被包覆其中。纳米颗粒的尺寸大约为40 nm。Fe3O4@SiO2复合颗粒典型的比饱和磁化强度高达43.842 A·m2/kg,并且其在室温下具有超顺磁性。由于该磁性纳米颗粒具有强磁性敏感性,它们势必可以应用于更加广泛的领域。  相似文献   

14.
Kim ID  Rothschild A  Lee BH  Kim DY  Jo SM  Tuller HL 《Nano letters》2006,6(9):2009-2013
Nanostructured semiconducting metal oxides and particularly single nanowire devices offer exceptional gas sensitivity but at the expense of statistical variations and excessive noise levels. In this study TiO2/poly(vinyl acetate) composite nanofiber mats were directly electrospun onto interdigitated Pt electrode arrays, hot pressed at 120 degrees C, and calcined at 450 degrees C. This resulted in a novel multiple nanowire network composed of sheaths of 200-500 nm diameter cores filled with readily gas accessible approximately 10 nm thick single-crystal anatase fibrils. TiO2 nanofiber sensors tested for NO2, in dry air, exhibited exceptional sensitivity showing with, for example, a 833% increase in sensor resistance when exposed to 500 ppb NO2 at 300 degrees C, consistent with a detection limit estimated to be well below 1 ppb. Unusual response patterns were observed at high NO2 concentrations (> 12.5 ppm), consistent with n to p inversion of the surface-trap limited conduction facilitated by the high surface-to-volume ratio of this material.  相似文献   

15.
This paper reports on the role of jet path in obtaining uniform and bead free nanofibers during electrospinning process. Polyethylene oxide (PEO) nanofibers were electrospun by varying the molecular weight of PEO and concentration of poly allylamine hydrochloride (PAH) in the spinning solution. Different modes of fiber formation were captured by a camera and analyzed further by image processing technique in order to assess their influence in the formation of uniform and bead free nanofibers. Two different jet paths during fiber formation, namely straight and whipping were assessed. The length of the straight jet path during the fiber formation played a major role in the formation of uniform nanofibers in comparison to the length of the whipping path. The diameter and surface morphology of the nanofibers were characterized by SEM. Nanofibers spun using higher concentration of PAH exhibited longer straight jet path and therefore more uniform nanofibers in comparison to that spun at lower concentration of PAH. Flow simulations of the electrically charged polymer solutions were carried out to observe the changes in the solution flow rate and Taylor cone shape. Increased flow rate and changes in the Taylor cone shape with the increasing PAH concentration in low molecular weight polymer were observed.  相似文献   

16.
This investigation addresses the morphological, mechanical, and antibacterial evaluation of nanocomposite mats based on poly(d,l-lactide) nanofibers with different zinc oxide nanoparticles (nano-ZnO) concentration, that were elaborated by two techniques, i.e., electrospinning of polymer/ZnO solutions and the combination of electrospinning of polymer solutions with electrospraying of nano-ZnO dispersions. The analysis of the precursory solutions was carried out in order to understand the achieved morphology of nanofibers. The obtained poly(d,l-lactide)/ZnO fibrous mats showed a uniform morphology with an average porosity ca. 55 % and average pore size around 45 μm. The presence of ZnO nanoparticles increased the toughness of the mats, and an optimal nano-ZnO concentration (i.e., 3 wt%) was observed at which the tensile strength and Young’s modulus could be improved. Concerning to the antibacterial properties, a relatively low concentration of nanoparticles provoked a growth inhibition of the Gram-negative Escherichia coli and the Gram-positive Staphylococcus aureus bacteria. The mats have potential features for use as antimicrobial wound dressings.  相似文献   

17.
Blinking fluorophore perovskite nanocrystals (NCs) were employed to image the fine structure of the polystyrene (PS) electrospun fibers. The conditions of CsPbBr3 NCs embedded and dispersed into PS were investigated and optimized. The stochastic optical reconstruction microscopy is employed to visualize the fine structure of the resulted CsPbBr3@PS electrospun fibers at sub-diffraction limit. The determined resolution in the reconstructed nanoscopic image is around 25.5 nm, which is much narrower than that of conventional fluorescence image. The complex reticulation and multicompartment in bead sub-diffraction-limited structures of CsPbBr3@PS electrospun fibers were successfully mapped with the help of the stochastic blinking properties of CsPbBr3 NCs. This work demonstrated the potential applications of CsPbBr3 perovskite NCs in super-resolution fluorescence imaging to reconstruct the sub-diffraction-limited features of polymeric material.  相似文献   

18.
Fabrication and characterization of electrospun titania nanofibers   总被引:1,自引:0,他引:1  
Titania (TiO2) nanofibers were fabricated by electrospinning three representative spin dopes made of titanium (IV) n-butoxide (TNBT) and polyvinylpyrrolidone (PVP) with the TNBT/PVP mass ratio being 1/2 in three solvent systems including N,N-dimethylformamide (DMF), isopropanol, and DMF/isopropanol (1/1 mass ratio) mixture, followed by pyrolysis at 500 °C. The detailed morphological and structural properties of both the as-electrospun precursor nanofibers and the resulting final TiO2 nanofibers were characterized by SEM, TEM, and XRD. The results indicated that the precursor nanofibers and the final TiO2 nanofibers made from the spin dopes containing DMF alone or DMF/isopropanol mixture as the solvent had the common cylindrical morphology with diameters ranging from tens to hundreds of nanometers, while those made from the spin dope containing isopropanol alone as the solvent had an abnormal concave morphology with sizes/widths ranging from sub-microns to microns. Despite the morphological discrepancies, all precursor nanofibers were structurally amorphous without distinguishable phase separation, while all final TiO2 nanofibers consisted of anatase-phased TiO2 single-crystalline grains with sizes of approximately 10 nm. The electrospun TiO2 nanofiber mat is expected to significantly outperform other forms (such as powder and film) of TiO2 for the solar cell (particularly dye-sensitized solar cell) and photo-catalysis applications.  相似文献   

19.
Continuous mullite (3Al2O3·2SiO2) nanofibers were fabricated by a sol-gel electrospinning technique. The detailed crystallization development and micromorphological evolution of both the as-electrospun nanofibers and the sintered mullite nanofibers were investigated. Results indicated that the spinnability and micromorphological evolution of mullite nanofibers are largely dependent on the viscosity η of the mullite sol, which can be adjusted by polyvinylprrolidone (PVP) content. Mullite nanofibers with common cylindrical morphology and diameters ranging from 400 nm to 800 nm could be obtained easily and rapidly when PVP content is ranged from 5 wt.% to 8 wt.%. High purity polycrystalline mullite nanofibers with diameters of about 200 nm were obtained after sintering at 1200 °C for 2 h. All sintered nanofibers consisted of single crystalline grains with size of approximately 100 nm.  相似文献   

20.
《Materials Research Bulletin》2006,41(6):1206-1214
The decomposition behaviour of 0.9MgTiO3–0.1CaTiO3 dielectric ceramic during a liquid phase sintering by lithium borosilicate (LBS) glass was studied. The decompositions of MgTiO3 into MgTi2O5 and Mg2TiO4 were apparent during the sintering although the reactions are thermodynamically unfavourable in glass-free compositions. The role of the LBS glass in favouring the decomposition reaction was investigated in terms of the thermodynamic activity of the reaction product in the glass. The decomposition reactions were not necessarily harmful because of the high dielectric performance of the decomposition products, MgTi2O5 (17.4 permittivity; 47,000 GHz quality factor) and Mg2TiO4 (14.4 and 55,000 GHz, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号