首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
讨论了载荷作用在裂纹面上的弹性半平面边界裂纹问题.研究以线弹性断裂力学为基础,采用复变函数方法以及Riemann-Hilbert(R-H)边值问题的一般理论,将问题分拆为含有限裂纹的全平面问题与无裂纹的半平面问题的叠加,计算得到裂纹尖端的应力强度因子.与文献结果比较,该方法具有精度高的优点.  相似文献   

2.
The transient thermal stress problem of a semi-infinite plate containing an infinite row of periodically distributed cracks normal to its edge is investigated in this paper. The elastic medium is assumed to be cooled suddenly on the crack-containing edge. By the superposition principle, the formulation leads to a mixed boundary value problem, with the negating tractions arisen from the thermal stresses for a crack-free semi-infinite plate. The resulting singular integral equation is solved numerically. The effects on the stress intensity factors due to the presence of periodically distributed cracks in a semi-infinite plate are illustrated. For both the edge crack and the embedded crack arrays, the stress intensity factors increase, due to the reduction of the shielding effect, as the stacking cracks are more separated. For the case of embedded crack array, one has the further conclusion that the stress intensity factors decline as the crack array shifts from the plate edge.  相似文献   

3.
Based on the Stroh-type formalism, we present a concise analytic method to solve the problem of complicated defects in piezoelectric materials. Using this method and the technique of conformal mapping, the problem of two non-symmetrical collinear cracks emanating from an elliptical hole in a piezoelectric solid is investigated under remotely uniform in-plane electric loading and anti-plane mechanical loading. The exact solutions of the field intensity factors and the energy release rate are presented in closed-form under the permeable electric boundary condition. With the variation of the geometrical parameters, the present results can be reduced to the well-known results of a mode-III crack in piezoelectric materials. Moreover, new special models used for simulating more practical defects in a piezoelectric solid are obtained, such as two symmetrical edge cracks and single edge crack emanating from an elliptical hole or circular hole, T-shaped crack, cross-shaped crack, and semi-infinite plane with an edge crack. Numerical results are then presented to reveal the effects of geometrical parameters and the applied mechanical loading on the field intensity factors and the energy release rate.  相似文献   

4.
The problem of a semi-infinite body with an edge crack subjected to far out-of-plane shear is solved by a transformation to a hodograph plane and the Wiener-Hopf technique. The material stress-strain behavior is governed by a pure power hardening relation and the results are valid for both deformation theory and flow theory of plasticity. Results are presented for crack opening displacement, path independent J integral and crack tip singularities for all finite values of the power hardening parameter.  相似文献   

5.
This paper provides the solution to the problem of dissimilar, homogeneous semi-infinite strips bonded through a functionally graded interlayer and weakened by an embedded or edge interfacial crack. The bonded system is assumed to be under antiplane deformation, subjected to either traction-free or clamped boundary conditions along its bounding planes. Based on the Fourier integral transform, the problem is formulated in terms of a singular integral equation which has a simple Cauchy kernel for the embedded crack and a generalized Cauchy kernel for the edge crack. In the numerical results, the effects of geometric and material parameters of the bonded system on the crack-tip stress intensity factors are presented in order to quantify the interfacial fracture behavior in the presence of the graded interlayer.  相似文献   

6.
The three-dimensional problem of a semi-infinite plane crack whose faces experience normal and shear tractions is considered. The formulation departs significantly from the Papkovich-Neuber formulation used in the works of Kassir and Sih and Uflyand who have solved similar problems. This alternative formulation considerably reduces the complexity of the calculations involved. The results reported here for the case of symmetric shear tractions parallel to the crack edge appear to be new.  相似文献   

7.
Summary The semi-infinite plate which is rigidly stiffened at a part on the boundary and with a crack originating from an end of the stiffened edge is analyzed as a mixed boundary value problem in a plane elastic problem. A complex variable method and a rational mapping function are used for the analysis. A closed solution is obtained. The rational mapping function is formed as a sum of fractional expressions. Distributions of stress and displacement in the neighbourhood of the crack and the stiffened edge are investigated for the state before and after occuring of a crack. Stress intensity factors which are important in linear fracture mechanics are obtained for various crack lengths.
Übersicht Eine Halbscheibe, die an einem Teil ihrer Berandung verstärkt ist und einen Haarriß hat, der von dem einen Ende des verstärkten Randes ausgeht, wird als ein gemischtes Randwertproblem innerhalb eines Scheibenproblems analysiert. Eine Methode komplexer Veränderlicher und eine Abbildungsfunktion werden zur Analyse verwendet. Eine geschlossene Lösung läßt sich angeben. Die Abbildungsfunktion wird als Summe von Partialbruchzerlegungen dargestellt. Spannungs- und Verschiebungs verteilung in der Umgebung des Risses werden berechnet. Der verstärkte Rand wird auf den Zustand vor und nach dem Entstehen eines Risses untersucht. Spannungsintensitätsfaktoren, die in der linear-elastischen Bruchmechanik von Bedeutung sind, werden für verschiedene Rißlängen ausgerechnet.
  相似文献   

8.
Based on the complex variable method and the technique of conformal mapping, the anti-plane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material is studied. The exact solutions of field intensity factors and energy release rate are presented in closed-form with the assumption that the surfaces of the cracks and the elliptical hole are electrically impermeable. With the variation of the hole-size and the crack length, the present results can be reduced to the cases of two symmetrical edge cracks and a single edge crack emanating from a circular hole given by Wang and Gao [Wang, Y.J., Gao, C.F., 2008. The mode III cracks originating from the edge of a circular hole in a piezoelectric solid. International Journal of Solids and Structures 45, 4590–4599]. Moreover, new models used for simulating more practical defects in a piezoelectric solid are obtained, such as two symmetrical edge cracks and a single edge crack emanating from an elliptical hole, two asymmetrical edge cracks emanating from a circular hole, T-shaped crack, cross-shaped crack and semi-infinite plane with an edge crack. Numerical examples are then conducted to reveal the effects of the hole-size and the crack length on the field intensity factors and the energy release rate.  相似文献   

9.
The elastic plane interaction between an arbitrarily located and oriented flat inclusion and a semi-infinite crack subjected to a remote Mode I loading is considered. The method uses distributions of edge dislocations to formulate integral expressions of flat inclusion (including crack) tractions and is shown to be very accurate by a test problem. The stress intensity factors of the main crack tip are presented for a variety of crack inclusion geometries. It is seen that the flat inclusion could either yield a stress enhancement or stress shielding effect to the main crack tip depending upon the location, orientation and thickness of the flat inclusion, and depending upon the modulus ratios of the flat inclusion to matrix.  相似文献   

10.
Three-dimensional fundamental solutions corresponding to a unit point force and point electric charge are obtained for a semi-infinite transversely isotropic piezoelectric solid. The free boundary is parallel to the plane of isotropy. They can be used as the Green’s function for solving the problem of a flat circular crack near the free surface which will be dealt with in Part II of this work.  相似文献   

11.
The weight function method is applied to obtain the stress intensity factor for a semi-elliptical surface crack in a circular edge notch subjected to polynomial loading on the crack faces. The crack region is considered as two sets of orthogonal slices superimposed such that the boundary conditions are satisfied. Numerical results are presented for different aspects ratios of the semi-elliptical surface crack in a notched semi-infinite region and compared with those found from the method of finite element.  相似文献   

12.
A cracked orthotropic semi-infinite plate under thermal shock is investigated. The thermal stresses are generated due to sudden cooling of the boundary by ramp function temperature change. The superposition technique is used to solve the problem. The crack problem is formulated by applying the thermal stresses obtained from the uncracked plate with opposite sign to be the only external loads on the crack surfaces as the crack surface tractions. The Fourier transform technique is used to solve the problem leading to a singular equation of the Cauchy type. The singular integral equation is solved numerically using the expansion method. The influence of the material orthotropy on the stress intensity factors is shown by comparing the results obtained for different orthotropic materials and isotropic materials in the case of plane stress. The numerical results of the stress intensity factors are demonstrated as a function of time, crack length, location of the crack and the duration of the cooling rate.  相似文献   

13.
Problems of stress wave propagation and diffraction in elastic inhomogeneous media are undoubtedly of interest to scientists from the viewpoint of investigation of fundamental laws of dynamic processes and of the use of the results in technical and technological applications. The paper deals with the dynamic contact problem of shear plane wave diffraction at the edge of a semi-infinite crack in a compound space consisting of two elastic half-spaces. The questions related to the onset of surface waves and the wave field behavior in far-field regions are also considered.  相似文献   

14.
Three-dimensional analysis of a half plane crack in a transversely isotropic solid is performed. The crack is subjected to a pair of normal point loads moving in a direction perpendicular to the crack edge on its faces. Transform methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener-Hopf technique. The Cagniard-de Hoop method is employed to invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of time and position along the crack edge. Some features of the solution are discussed through numerical results. The project supported by the Guangdong Provincial Natural Science Foundation and the Science Foundation of Shantou University  相似文献   

15.
In this note, integral equations for the problem of an internal plane crack of arbitrary shape in a three-dimensional elastic half-space are derived. The crack plane is assumed to beparallel to the free surface. Use is made of Mindlin's point force solution in the interior of a semi-infinite solid in deriving the integral equations for the problem.  相似文献   

16.
Using the formal asymptotic approximation of the Mode I stress intensity factor for an edge crack in a thermoelastic half plane containing several small voids obtained in [Nieves, M.J., Movchan, A.B., and Jones, I.S., 2011. Asymptotic study of a thermoelastic problem in a semi-infinite body containing a surface-breaking crack and small perforations. QJMAM 64 (3), 349–369] we investigate the effect of micro-cracks on this stress intensity factor. In numerical examples, we show how the behaviour of the stress intensity factor as a function of crack depth is affected by micro-cracks of different orientations occurring in the half space.  相似文献   

17.
讨论横观各向同性体中含一半平面裂纹,在裂纹面上作用有运动点荷载的三维复合型应力强度因子历史,通过积分变换技术,最终将问题归结为求解Wiener-Hopf型积分方程组,该文给出了求解这一类积分方程组的一般性方法,在此基础上,基于Abel定理和Cagniard-deHoop方法,求得Ⅱ、Ⅲ型复合应力强度因子的解析解,最后通过数值结果揭示了横观各向同性材料三维方尖端场的动态特性。  相似文献   

18.
赵晓华 《力学季刊》2000,21(4):462-469
讨论一对集中力作用下横观各向同性体三维裂纹的瞬态扩展问题,其解答构成三维裂纹瞬态扩展问题的基本解。求解方法是基于积分变换技术,将混合边值问题化为Wiener-Hopf型积分方程,求得了裂纹所在平面应力和位移的封闭形式解。进一步利用Abel定理和Cagniard-de Hoop方法,求得了动态应力强度因子的精确解。最后通过数值结果揭示了横观各向同性材料三维扩展裂纹尖端场的动态特性。  相似文献   

19.
Summary In a foregoing paper the present author developed methods for studying the transient field from a vertical electric antenna placed in the vicinity of the plane boundary of two semi-infinite dielectric media.As the theory involved is applicable to the comparable elastodynamic pulse problem the present paper deals with the field from a buried transient longitudinal source in an elastic half space.The method appears to be relatively simple and is also applicable to the more general problem in which two elastic semi-infinite solids are separated by a plane boundary.  相似文献   

20.
The problem of vibrations of an ice sheet with a rectilinear crack on the surface of an ideal incompressible fluid of finite depth under the action of a time-periodic local load is solved analytically using the Wiener–Hopf technique. Ice cover is simulated by two thin elastic semi-infinite plates of constant thickness. The thickness of the plates may be different on the opposite sides of the crack. Various boundary conditions on the edges of the plates are considered. For the case of contact of plates of the same thickness, a solution in explicit form is obtained. The asymptotics of the deflection of the plates in the far field is studied. It is shown that in the case of contact of two plates of different thickness, predominant directions of wave propagation at an angle to the crack can be identified in the far field. In the case of contact of plates of the same thickness with free edges and with free overlap, an edge waveguide mode propagating along the crack is excited. It is shown that the edge mode propagates with maximum amplitude if the vertical wall is in contact with the plate. Examples of calculations are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号