首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The present study aimed at elucidating the effect of nitric oxide (NO) on blood-brain barrier (BBB) function with mouse brain capillary endothelial (MBEC4) cells. 2. Histamine (20–100 μM) evoked NO production (1.6–7 μM) in MBEC4 cells in a dose-dependent manner. 3. The permeability coefficient of sodium fluorescein for MBEC4 cells and the cellular accumulation of rhodamine 123 in MBEC4 cells were increased dose-dependently by the addition of NO solutions (14 and 28 μM) every 10 min during a 30-min period. 4. The present study demonstrated that NO increased the permeability and inhibited the P-glycoprotein efflux pump of brain capillary endothelial cells, suggesting that NO plays an inhibitory role in the dynamic regulation of the BBB function.  相似文献   

2.
We studied the hexose transporter protein of the frontal and temporal neocortex, hippocampus, putamen, cerebellum, and cerebral microvessels (which constitute the blood-brain barrier) in Alzheimer disease and control subjects by reversible and covalent binding with [3H]cytochalasin B and by immunological reactivity. In Alzheimer disease subjects, we found a marked decrease in the hexose transporter in brain microvessels and in the cerebral neocortex and hippocampus, regions that are most affected in Alzheimer disease, but there were no abnormalities in the putamen or cerebellum. Hexose transporter reduction in cerebral microvessels of Alzheimer subjects is relatively specific because other enzyme markers of brain endothelium were not significantly altered. The low density of the hexose transporter at the blood-brain barrier and in the cerebral cortex in Alzheimer disease may be related to decreased in vivo measurements of cerebral oxidative metabolism.  相似文献   

3.
Summary Brain microvessel endothelial cells (BMEC) exhibit the tendency to migrate through 3.0-vm pore semipermeable inserts and establish monolayers on both apical and basal filter surfaces. This can potentially lead to complications in accurately assessing a wide variety of physiologic parameters uniquely associated with these cells. To avoid this problem, we have explored growing BMEC on Transwell filters coated with hydrated collagen gels. BMEC seeded on such gels grow as a monolayer until confluency, but do not invade the subendothelial collagen matrix or the underlying support filter. Furthermore, BMEC grown in this manner exhibit biochemical, morphologic, and electrophysiologic properties reflective of the endothelial cells that comprise the blood-brain barrier in vivo. Although the collagen gel acts as an impenetrable barrier to BMEC, and thus ensures the growth of only a single layer of cells, it nevertheless can be infiltrated by monocytes that have been stimulated by a chemotaxin to undergo diapedesis. Thus, growing BMEC on collagen gel-coated Transwells has broad applications for the in vitro study of both blood-brain barrier physiology as well as the mechanisms underlying central nervous system inflammation.  相似文献   

4.
Sprague-Dawley rats were anesthetized with chloral hydrate, and plastic cannulae were permanently implanted into the lateral ventricles. The animals then were allowed to recover for 1-2 days. L-Buthionine sulfoximine (L-BSO), a selective inhibitor of glutathione (GSH) synthesis, and 6-hydroxydopamine (6-OH-DA), a selective catecholaminergic neurotoxin, were administered intracerebroventricularly. The striatal concentrations of GSH and monoamines were determined by HPLC with electrochemical detection. Two injections of L-BSO (3.2 mg, at a 48-h interval) resulted in a 70% reduction of striatal GSH. 6-OH-DA (150 or 300 micrograms) reduced the concentrations of striatal dopamine and noradrenaline 7 days after the administration, but left the concentrations of 5-hydroxytryptamine unaltered. L-BSO treatment did not produce any changes in the levels of monoamines per se but it potentiated the catecholamine-depleting effect of 6-OH-DA in the striatum. Thus, GSH appears to suppress the toxicity of 6-OH-DA, probably by scavenging the toxic species formed during 6-OH-DA oxidation. In view of these results one may suggest an important role for GSH in catecholaminergic neurons: protecting against the oxidation of endogenous catechols.  相似文献   

5.
Ramsohoye  P.V.  Fritz  I.B. 《Neurochemical research》1998,23(12):1545-1551
Factors secreted by C6 glioma cells which induce electrical resistances across endothelial monolayers in an in vitro blood-brain barrier model have been partially characterised for the first time. These transendothelial electrical resistances (TEERs) were only evident when cell-free conditioned medium derived from C6 glioma cells was applied to the basolateral surfaces of confluent ECV304 or ECV304-9 cells which are both human umbilical vein endothelial cell lines (HUVEC). Electrical resistance values as high as 600 ohm. sq cm were obtained with this blood-brain barrier model and ultrafiltration techniques suggest that any factor(s) in the conditioned medium responsible for these TEERs have molecular masses of less than 1000 Da. Enzymic proteolysis and heat treatment carried out on the conditioned medium failed to inhibit its effect on the HUVEC monolayers suggesting that these C6 cell-secreted factors are unlikely to be proteins.  相似文献   

6.
Guo X  Geng M  Du G 《Biochemical genetics》2005,43(3-4):175-187
Facilitative glucose transport is mediated by one or more of the members of the closely related glucose transporter (GLUT) family. Thirteen members of the GLUT family have been described thus far. GLUT1 is a widely expressed isoform that provides many cells with their basic glucose requirement. It is also the primary transporter across the blood-brain barrier. This review describes the distribution and expression of GLUT1 in brain in different pathophysiological conditions including Alzheimers disease, epilepsy, ischemia, or traumatic brain injury. Recent investigations show that GLUT1 mediates the transport of some neuroactive drugs, such as glycosylated neuropeptides, low molecular weight heparin, and d-glucose derivatives, across the blood-brain barrier as a delivery system. By utilizing such highly specific transport mechanisms, it should be possible to establish strategies to regulate the entry of candidate drugs.  相似文献   

7.
Abstract: The nature of cysteine and cystine uptake from the cerebral capillary lumen was studied in the rat using the carotid injection technique. [35S]-Cysteine uptake was readily inhibited by the synthetic amino acid 2-amino-bicyclo(2,2,1)heptane-2-carboxylic acid (BCH), the defining substrate for the leucine-preferring (L) system in the Ehrlich ascites cell. The addition of non-radioactive alanine or serine, representatives of the alanine, serine, and cysteine-preferring (ASC) system, produced no significant decrease in the uptake of cysteine after cysteine transport by the L system was blocked with BCH. This indicated that the major component of cysteine's transport from the brain capillary lumen was by the L system with no detectable uptake of cysteine by the ASC system. No carrier-mediated transport of cystine, the disulfide form of the amino acid, was detected, nor was there any inhibition by cystine of the transport of the neutral amino acid methionine or the basic amino acid arginine. These results suggest that the ASC system, if present, is not quantitatively important for the transport of neutral amino acids from the brain capillary lumen.  相似文献   

8.
We recently presented evidence that the reversible opening of the blood-brain barrier (BBB) by the infusion of 1.6 M mannitol into the rat internal carotid artery is mediated by a rapid stimulation of ornithine decarboxylase (ODC) activity and putrescine synthesis in cerebral capillaries. We have now investigated this hypothesis further, using isolated rat cerebral capillaries as an in vitro model of the BBB. The ODC activity of cerebral capillary preparations was enriched up to 15-fold over that of the cerebral homogenate. Hyperosmolal mannitol in physiological buffer evoked a rapid (less than 15 s), concentration- and time-dependent increase in capillary ODC activity and an accumulation of putrescine and spermidine which was blocked by the specific ODC inhibitor, alpha-difluoromethylornithine (DFMO, 10 mM). Mannitol (1 M), as well as 2 M urea, evoked a two- to fivefold increase in the temperature-sensitive influx of 45Ca2+ and uptake of horseradish peroxidase (HRP) and 2-deoxy-D-[1-3H]glucose (DG), but not alpha-[1-14C]aminoisobutyrate, during a 2-min incubation. DFMO (10 mM) abolished 1 M mannitol-mediated stimulation of 45Ca2+ influx and uptake of HRP and DG, whereas 1 mM putrescine replenished capillary polyamines and reversed the DFMO effects. Mannitol (1 M)-induced stimulation of ODC activity and membrane transport processes was Ca2+-dependent and verapamil- and nisoldipine-sensitive. Phorbol myristate acetate (PMA, 10 nM), a protein kinase C activator, also evoked a two- to threefold stimulation of 45Ca2+ transport and HRP and DG uptake. This PMA effect was abolished by DFMO, suggesting involvement of rapid, ODC-controlled polyamine synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Sunitha  Y.  Udaykumar  P.  Raghunath  M. 《Neurochemical research》1997,22(7):785-790
Thyroid hormones affect the structure and function of biological membranes. Whether or not they affect the Blood-Brain Barrier nutrient transport, the rate limiting membrane transport regulating nutrient supply to brain is to be established yet. That the impaired brain development and function seen in iodine deficiency could be due to such an effect has been assessed in situ by the brain uptake index (BUI) method in Wistar/NIN rat pups born to dams subjected to dietary iodine deficiency/rehabilitation for different times. Compared to controls (C), there was a significant decrease in the BUI values of 2-Deoxy-D-Glucose (2-DG) and L-leucine (Leu) in the pups (D1) born to dams chronically fed low iodine test (LIT) diet through their active growth and subsequent pregnancy and lactation. Surprisingly transport of L-Tyrosine (Tyr) and sucrose (the background marker) was not altered, nor was the BBB transport of all these nutrients affected by feeding LIT diet during the mothers' gestation (D2) and lactation (D3) only. The hypothyroidism in D1 pups was only moderate and preventable by rehabilitation of mothers with control diet from conception (R1) or parturition (R2), as were the changes in BBB nutrient transport. The results suggest that chronic material dietary iodine deficiency impairs BBB nutrient transport in the offspring and this could be prevented by their rehabilitation with iodine.  相似文献   

10.
(1) The blood–brain barrier (BBB) characteristics of cerebral endothelial cells are induced by organ-specific local signals. Brain endothelial cells lose their phenotype in cultures without cross-talk with neighboring cells. (2) In contrast to astrocytes, pericytes, another neighboring cell of endothelial cells in brain capillaries, are rarely used in BBB co-culture systems. (3) Seven different types of BBB models, mono-culture, double and triple co-cultures, were constructed from primary rat brain endothelial cells, astrocytes and pericytes on culture inserts. The barrier integrity of the models were compared by measurement of transendothelial electrical resistance and permeability for the small molecular weight marker fluorescein. (4) We could confirm that brain endothelial monolayers in mono-culture do not form tight barrier. Pericytes induced higher electrical resistance and lower permeability for fluorescein than type I astrocytes in co-culture conditions. In triple co-culture models the tightest barrier was observed when endothelial cells and pericytes were positioned on the two sides of the porous filter membrane of the inserts and astrocytes at the bottom of the culture dish. (5) For the first time a rat primary culture based syngeneic triple co-culture BBB model has been constructed using brain pericytes beside brain endothelial cells and astrocytes. This model, mimicking closely the anatomical position of the cells at the BBB in vivo, was superior to the other BBB models tested. (6) The influence of pericytes on the BBB properties of brain endothelial cells may be as important as that of astrocytes and could be exploited in the construction of better BBB models.  相似文献   

11.
Anesthetics, particularly barbiturates, have depressive effects on cerebral blood flow and metabolism and likely have similar effects on blood-brain barrier (BBB) transport. In previous studies utilizing the carotid injection technique, it was necessary to anesthetize the animals prior to performing the experiment. The carotid injection technique was modified by catheter implantation in the external carotid artery at the bifurcation of the common carotid artery. The technique was used to determine cerebral blood flow, the Km, Vmax, and KD of glucose transport in hippocampus, caudate, cortex, and thalamus-hypothalamus in conscious rats. Blood flow increased two to three times from that seen in the anesthetized rat. The Km in the four regions ranged between 6.5 and 9.2 mM, the Vmax ranged between 1.15 and 2.07 mumol/min/g, and the KD ranged between 0.015 and 0.035 ml/min/g. The Km and KD in the conscious rat did not differ from the values seen in the barbiturate anesthetized rat. The Vmax, on the other hand, increased two- to three-fold from that seen in the anesthetized rat and was nearly proportional to the increase in blood flow seen in the conscious rat. The development of the external carotid catheter technique now allows for determination of BBB substrate transport in conscious animals.  相似文献   

12.
Abstract : The passage of either unesterified docosahexaenoic acid (DHA) or lysophosphatidylcholine-containing DHA (lysoPC-DHA) through an in vitro model of the blood-brain barrier was investigated. The model was constituted by a brain capillary endothelial cell monolayer set over the medium of an astrocyte culture. Cells were incubated for 4 h with a medium devoid of serum, then the endothelial cell medium was replaced by the same medium containing labeled DHA or lysoPC-DHA and incubations were performed for 2 h. DHA uptake by cells and its transfer to the lower medium (astrocyte medium when they were present) were measured. When the lower medium from preincubation and astrocytes were maintained during incubation, the passage of lysoPC-DHA was higher than that of unesterified DHA. The passage of both forms decreased when astrocytes were removed. The preference for lysoPC-DHA was not seen when the lower medium from preincubation was replaced by fresh medium, and was reversed when albumin was added to the lower medium. A preferential lysoPC-DHA passage also occurred after 2 h with brain endothelial cells cultured without astrocytes but not with aortic endothelial cells cultured and incubated under the same conditions. Altogether, these results suggest that the blood-brain barrier cells released components favoring the DHA transfer and exhibit a preference for lysoPC-DHA.  相似文献   

13.
On treatment with collagenase, brain microvessels, together with several protein components, lose some enzymatic activities such as alkaline phosphatase and gamma-glutamyltranspeptidase, whereas no change occurs in the activities of 5'-nucleotidase and glutamine synthetase. The energy-requiring "A-system" of polar neutral amino acid transport is also severely inactivated, whereas the L-system for the facilitated exchange of branched chain and aromatic amino acids is preserved. In the collagenase-digested microvessels, this leads to loss of the transtimulation effect of glutamine on the transport of large neutral amino acids, because such transtimulation is due to a cooperation between the A- and L-systems. By contrast, NH4+ maintains (and even enhances) its ability to stimulate the L-system of amino acid transport, presumably through glutamine synthesis within the endothelial cells.  相似文献   

14.
Saturable Transport of Manganese(II) Across the Rat Blood-Brain Barrier   总被引:4,自引:3,他引:1  
Unanesthetized adult male rats were infused intravenously with solutions containing 54Mn (II) and one of six concentrations of stable Mn(II). The infusion was timed to produce a near constant [Mn] in plasma for up to 20 min. Plasma was collected serially and on termination of the experiment, samples of CSF, eight brain regions, and choroid plexus (CP) were obtained. Influx of Mn (JMn) was calculated from uptake of 54Mn into tissues and CSF at two different times. Plasma [Mn] was varied 1,000-fold (0.076-78 nmol/ml). Over this plasma concentration range, JMn increased 123 times into CP, 18-120 times into brain, and 706 times into CSF. CP and brain JMn values fit saturation kinetics with Km (nmol/ml) equal to 15 for CP and 0.7-2.1 for brain, and Vmax (10(-2) nmol.g-1.s-1) of 27 for CP and 0.025-0.054 for brain. Brain JMn except at cerebral cortex had a nonsaturable component. CSF JMn varied linearly with plasma [Mn]. These findings suggest that Mn transport into brain and CP is saturable, but transport into CSF is nonsaturable.  相似文献   

15.
Abstract: Since protein synthesis in the developing brain may, under certain conditions, be limited by amino acid availability, the present studies were undertaken to characterize the kinetics of large neutral amino acid transport through the blood-brain barrier (BBB) of the newborn rabbit. The Km, Vmax, and KD of the transport of eight amino acids were determined by a nonlinear regression analysis of data obtained with the carotid injection technique. Compared with kinetic parameters observed for the adult rat, the Km, Vmax, and KD of amino acid transport were all two- to threefold higher in the newborn. Albumin was found to bind tryptophan actively in vitro , but had no inhibitory effect on tryptophan transport through the newborn BBB. Glutamine was transported through the BBB of the newborn at rates severalfold higher than are seen in the adult rat. However, glutamine transport was not inhibited by high concentrations of N -methylaminoisobutyric acid (NMAIB), a model amino acid that is specific for the alanine-preferring or A-system present in peripheral tissues. In conclusion, these studies show that the BBB neutral amino acid transport system of the newborn rabbit has a lower affinity and higher capacity than does the BBB of the adult rat. Under conditions of high plasma amino acids, the increased capacity of the newborn transport system allows for a higher rate of amino acid transport into brain than would occur via the lower capacity system present in the adult rat brain.  相似文献   

16.
We studied the enzyme monoamine oxidase (MAO) in isolated cerebral microvessels, and in mitochondria-enriched brain and liver preparations from six mammalian species, including human. We also studied MAO distribution in various tissues and in discrete brain regions of the rat. MAO was assessed by measuring the specific binding of [3H]pargyline, an irreversible MAO inhibitor, and the rates of oxidation of known MAO substrates: benzylamine, tyramine, tryptamine, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Molecular forms of MAO were examined by using specific MAO inhibitors, and by polyacrylamide gel electrophoresis after [3H]pargyline binding. In general, the liver from all species had higher MAO levels than the brain, with minor variation among species in their brain and liver MAO content. However, there were remarkable species differences in brain microvessel MAO, with rat microvessels having one of the highest MAO activity among all tissues, whereas MAO activities in brain microvessels from humans, mice, and guinea pigs were very low. In most rat tissues, including the brain, there was a preponderance of MAO-B over MAO-A. The only exceptions were the heart and skeletal muscle. Estimates of MAO half-life in rat brain microvessels, rat brain, and rat liver indicated that microvessel MAO had a higher turnover rate. The reasons underlying the remarkable enrichment of rat cerebral microvessels with MAO-B are unknown, but it is evident that there are marked species differences in brain capillary endothelium MAO activity. The biological significance of these findings vis a vis the role of MAO as a "biochemical blood-brain barrier" that protects the brain from circulating neurotoxins and biogenic amines should be investigated.  相似文献   

17.
Transport of [tyrosyl-3,5-3H]enkephalin-(5-L-leucine) [( 3H]Leu-enkephalin) across the blood-brain barrier was studied in the adult guinea pig, by means of vascular perfusion of the head in vivo. The unidirectional transfer constant (Kin) estimated from the multiple-time uptake data for [3H]Leu-enkephalin ranged from 3.62 X 10(-3) to 3.63 X 10(-3) ml min-1 g-1 in the parietal cortex, caudate nucleus, and hippocampus. Transport of [3H]Leu-enkephalin was not inhibited by unlabelled L-tyrosine (the N-terminal amino acid) at a concentration as high as 5 mM, or by the inhibitor of aminopeptidase activity bacitracin (2 mM), suggesting that there was no enzymatic degradation of peptide at the blood-brain barrier. By contrast, 2 mM unlabelled Leu-enkephalin strongly inhibited the unidirectional blood-to-brain transport of [3H]Leu-enkephalin by 74-78% in the parietal cortex, caudate nucleus, and hippocampus. The tetrapeptide tyrosyl-glycyl-glycyl-phenylalanine (without the C-terminal leucine of Leu-enkephalin), at a concentration of 5 mM, caused a moderate inhibition ranging from 15 to 29% in the brain regions studied, whereas the tetrapeptide glycyl-glycyl-phenylalanyl-leucine (without the N-terminal tyrosine) at 5 mM was without effect on Leu-enkephalin transport. Unidirectional brain uptake of Leu-enkephalin was not altered in the presence of naloxone at a concentration as high as 3 mM (1 mg/ml), suggesting that there is no binding of Leu-enkephalin to opioid receptors at the blood-brain barrier. It is concluded that there is a specific transport mechanism for Leu-enkephalin at the blood-brain barrier in the guinea pig.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
血脑屏障的破坏是引起脑缺血损伤及继发水肿、出血、炎症的微观原因。缺血缺氧和再灌注过程产生的自由基,以及后续基质金属蛋白酶的激活,是破坏血脑屏障结构和功能的重要分子机制。因而,在脑缺血早期及时抑制自由基产生并清除自由基,抑制基质金属蛋白酶的活性,是降低脑缺血血脑屏障损伤及其并发症的关键环节。本文将从血脑屏障损伤的角度,概述自由基与基质金属蛋白酶在脑缺血损伤过程中的作用。  相似文献   

19.
Threonine entry into brain is altered by diet-induced changes in concentrations of plasma amino acids, especially the small neutrals. To study this finding further, we compared effects of various amino acids (large and small neutrals, analogues, and transport models) on transport of threonine and phenylalanine across the blood-brain barrier. Threonine transport was saturable and was usually depressed more by natural large than small neutrals. Norvaline and 2-amino-n-butyrate (AABA) were stronger competitors than norleucine. 2-Aminobicyclo[2.2.1]heptane-2-carboxylate (BCH), a model in other preparations for the large neutral (L) system, and cysteine, a proposed model for the ASC system only in certain preparations, reduced threonine transport; 2-(methylamino)isobutyrate (MeAIB; a model for the A system for small neutrals) did not. Phenylalanine transport was most depressed by cold phenylalanine and other large neutrals; threonine and other small neutrals had little effect. Norleucine, but not AABA, was a strong competitor; BCH was more competitive than cysteine or MeAIB. Absence of sodium did not affect phenylalanine transport, but decreased threonine uptake by 25% (p less than 0.001). Our results with natural, analogue, and model amino acids, and especially with sodium, suggest that threonine, but not phenylalanine, may enter the brain partly by the sodium-dependent ASC system.  相似文献   

20.
Microwaves (pulsed, 2,450 MHz) at an average power density of 3 W/cm2 were applied directly to the head for 5, 10, or 20 min, producing a peak specific absorption rate of 240 W/kg in the brain, which, after a 10-min exposure, resulted in brain temperatures in excess of 43°C. A bolus of 86Rb in isotonic saline was injected intravenously and an arterial sample was collected for 20 s to determine cardiac output. Compared with unexposed controls, uptake of 86Rb increased most in those regions directly in the path of the irradiation, namely, the occipital and parietal cortex, as well as the dorsal hippocampus, midbrain, and basal ganglia. In a separate group of animals, regional brain-vascular spaces were found to increase with brain temperature. These results support previous observations indicating that reliably demonstrable increases of blood-brain barrier permeability are associated with intense, microwave-induced hyperthermia, and that the observed changes are not due to field-specific interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号