首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer(WPT)in the near field has been extensively developed in recent years,and promoted a variety of practical applications,such as mobile phones,medical implant devices and electric vehicles.However,the physical mechanism behind some key limitations of the resonance WPT,such as frequency splitting and size-dependent efficiency,is not very clear under the widely used circuit model.Here,we review the recently developed efficient and stable resonance WPT based on non-Hermitian physics,which starts from a completely different avenue(utilizing loss and gain)to introduce novel functionalities to the resonance WPT.From the perspective of non-Hermitian photonics,the coherent and incoherent effects compete and coexist in the WPT system,and the weak stable of energy transfer mainly comes from the broken phase associated with the phase transition of parity-time symmetry.Based on this basic physical framework,some optimization schemes are proposed,including using nonlinear effect,using bound states in the continuum,or resorting to the system with high-order parity-time symmetry.Moreover,the combination of non-Hermitian physics and topological photonics in multi-coil system also provides a versatile platform for long-range robust WPT with topological protection.Therefore,the non-Hermitian physics can not only exactly predict the main results of current WPT systems,but also provide new ways to solve the difficulties of previous designs.  相似文献   

2.
介绍了一种基于调制偏振光的空间正交方位信息传递系统。系统利用调制和解调传递一个正交方位,用电光晶体对偏振光进行调制,电光晶体的感生主轴方向构成发射部分的基准方位。接收部分利用Wollaston棱镜和光电转换器进行解调,由感生主轴构成的基准方位和Wollaston棱镜的两正交光轴之间的夹角信息反映了正交方位传递的精确性。  相似文献   

3.
As an important application of the fifth generation (5G) mobile communication systems, Internet of Things (IoT) has attracted worldwide research interests. Since most of the communication devices in IoT are powered by batteries, these devices always have limited operation time. Wireless power transfer (WPT) technology, which can transfer power over a wireless medium (without any wires), can avoid the need to manually replace or recharge the batteries of the wireless devices in IoT. For electromagnetic (EM) radiation-based WPT, since radio-frequency (RF) signals that transport energy can at the same time be used for wireless communications, integrated wireless communications and WPT becomes a new research area which has attracted great research interests. In this paper, we first introduce two main research paradigms for integrated wireless communications and WPT, i.e., simultaneous wireless information and power transfer (SWIPT) and wireless-powered communication network (WPCN). Then we provide an overview of the state-of-the-art of both SWIPT and WPCN, respectively. Finally, we point out the new and challenging future research direction.  相似文献   

4.
We consider the problem of transmission of channel state information for a transmitting beamformer in digital communication systems with adaptive transmitting and receiving antennas. It is shown that using the unitary property of the weighting matrices of the transmitting beamformer, we can significantly reduce the amount of transmitted information with the help of the well-known Givens decomposition. We propose a method for determining the optimal bit allocation for quantization of the complex weighting coefficients of the transmitting beamformer. Results of mathematical simulation of a wireless digital communication system with multielement adaptive antenna arrays are shown for a multipath Rayleigh channel. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 9, pp. 814–823, September 2008.  相似文献   

5.
在焦平面图像红外无线传输系统中,通过引入边沿位置调制(EPM)方式来代替传统的脉冲位置调制方式,提高了传输带宽效率。提出了基于反熔丝FPGA的EPM调制低功耗实现方案,包括输入接口、缓冲器与RLL(5,12)编码状态机的设计,以及数据恢复、脉冲提取等EPM解调关键技术的解决方案。实验系统利用EPM调制方式,在24MHz带宽条件下实现了320×240像素视频数据的低功耗红外无线实时传输,促进了焦平面图像红外无线输出的进一步实用化。  相似文献   

6.
郭志伟  陈鸿 《物理》2024,53(1):33-41
无线电能传输技术是指不需要线缆或者波导结构,利用电磁波直接将电能从电源传输到负载的技术。作为能量传输的一种全新方式,无线电能传输技术可以极大地提高供电设备的安全性、可靠性和便捷性,其在消费电子行业、自动化工业车间以及人工智能平台等需要高自由度供能的场景中具有重要的应用价值。目前无线电能传输技术仍存在一定的局限性,特别是对于广为关注的磁共振耦合无线电能传输技术,面临着高效率和稳定性难以兼顾的巨大挑战。文章以近场无线电能传输技术为研究框架,深入介绍非厄米新物理在无线电能传输系统中的调控机理,及其在高效、稳定、待机功率损耗、电磁环境兼容等方面的突出优势,最后对无线电能传输未来的研究方向进行了展望。  相似文献   

7.
Providing a stable and perpetual source of energy to charge battery-powered wireless communication devices is viewed as a major challenge in wireless communication systems. This challenge leads to the trending research area where radio frequency signals are being exploited for energy harvesting purposes. The technique for achieving this is known as simultaneous wireless information and power transfer (SWIPT). In recent studies on SWIPT, the massive Multiple-Input-Multiple-Output (MIMO) aided energy harvesting has attracted considerable attention from the research community. This can be attributed to the high energy delivery rate of massive MIMO antenna systems due to their capacity to focus transmitted signals in the direction of the intended receivers. However, SWIPT in massive MIMO networks requires an optimal design to achieve a proper balance between different conflicting network objectives. In this article, we aim to discuss various contributions to SWIPT in massive MIMO networks in order to address critical design issues. In particular, we focus on the widely adopted approach to resolving SWIPT-related issues in massive MIMO networks, that is, the resource allocation design. We also extend our discussion to studies dedicated to solving critical design challenges. In this regard, we take into consideration the energy efficiency and security aspect of the system design. Finally, we identify potential areas that can be explored for future research work.  相似文献   

8.
电机学问题一直以来是人们广泛研究的重点.为了探究异步电机的转速平滑灵活调控问题,简化其电路复杂程度和降低成本,本文提出了一种基于相位差起转机理的电机模型.从电机旋转机制出发,并结合基于有限元差分的商业仿真软件COMSOL加以分析探究,理论上分析了模型中导致电机转盘旋转的力矩的大小及方向,定量地探究了影响转盘旋转速率的影响因素.结果表明,相位差导致转盘所受吸引力的不对称而产生的力矩使得转盘旋转,并且圆盘转速与金属插片相对面积,施加电压等因素成正比,与二者插入间距成反比,金属薄片的插入位置带动圆盘的旋转方向.  相似文献   

9.
张海洋  黄永明  杨绿溪 《物理学报》2015,64(2):28402-028402
针对无线携能通信系统中存在能量获取不均衡的问题, 提出了一种基于能量获取比例公平的波束成形设计方案. 该方案在满足信息接收者的信干噪比以及发送端的最大发送功率等约束条件的基础上, 通过优化波束矢量实现能量获取的比例公平. 此设计在数学上是一个很难直接求解的非凸优化问题.为此, 本文首先利用半定松弛技术将其转换为半定规划问题, 然后结合二分法提出了可以获得最优波束矢量的迭代算法.此外, 在发送端仅知道部分信道状态信息且知道信道误差范围的情况下, 采用最差性能最优的方法对原优化问题进行了鲁棒波束成形设计, 并提出了相应的迭代算法. 仿真结果表明所提算法均可实现能量获取的比例公平且性能达到全局最优.  相似文献   

10.
There is a broad area of research to ensure that information is transmitted securely. Within this scope, chaos-based cryptography takes a prominent role due to its nonlinear properties. Using these properties, we propose a secure mechanism for transmitting data that relies on chaotic networks. We use a nonlinear on–off device to cipher the message, and the transfer entropy to retrieve it. We analyze the system capability for sending messages, and we obtain expressions for the operating time. We demonstrate the system efficiency for a wide range of parameters. We find similarities between our method and the reservoir computing.  相似文献   

11.
We experimentally demonstrated optical wireless power transfer(OWPT) using a near-infrared laser diode(LD)as the optical power transmitter.We considered a photovoltaic(PV) cell and a photodiode(PD) as the optical power receivers.We investigated the characteristics of the LD,PD,and PV cell in order to determine the optimum operating condition from the viewpoint of transfer efficiency.We also experimentally demonstrated a whole system optimization process to maximize the DC-to-DC transfer efficiency of the OWPT.Our experimental results showed that the optimization process can improve the OWPT efficiency by up to 48%.  相似文献   

12.
周泰斗  梁小宝  李超  黄志华  封建胜  赵磊  王建军  景峰 《物理学报》2017,66(8):84204-084204
体光栅光谱组束是获得高功率激光输出的一种有效途径.在有限的可用带宽内,光谱通道间隔影响着组束光束数目以及最终的高功率组束输出.采用耦合波理论,建立了一个两通道高功率光谱组束模型.通过优化体光栅光谱通道间隔,可放宽对组束子束线宽和功率的限制,组束功率可大幅提升而光谱密度并无显著下降.基于此,实验上获得了2.5 kW组束输出,绝对效率超过85%,通道间隔5 nm,光谱密度为0.51kW/nm.组束功率1 kW时,组束输出能保持好的光束质量;组束功率1.5kW时光束质量恶化较明显,通过分析发现,组束光束质量的恶化主要受限于体光栅的色散及高功率下体光栅复杂的热畸变.  相似文献   

13.
Jiu-Sheng Li 《中国物理 B》2022,31(9):94201-094201
A dual-function terahertz metasurface based on VO2 and graphene is proposed in this paper. It consists of a gold layer embedded with VO2 patches, a SiO2 spacer layer, a VO2 layer, graphene and a SiO2 spacer substrate. When the bottom VO2 layer is in the metallic state, the designed metasurface can achieve absorption. When the top VO2 patches are in the metallic state, the proposed metasurface can be used as a single-band absorber with terahertz absorptance of 99.7% at 0.736 THz. When the top VO2 patches are in the insulating state, the designed structure behaves as a dual-band absorber with an absorptance of 98.9% at 0.894 THz and 99.9% at 1.408 THz. In addition, the absorber is polarization insensitive and keeps good performance at large angles of incidence. When the bottom VO2 is in an insulating state, the metasurface shows electromagnetically induced transparency. The transparent window can be dynamically regulated by controlling the chemical potential of graphene. The proposed metasurface exhibits the advantages of terahertz absorption, electromagnetically induced transparency and dynamic control, which provides more options for the design of terahertz devices in the future.  相似文献   

14.
A novel dual-broadband and near-perfect reflective polarization converter based on anisotropic metasurface is presented and analyzed in this paper. The unit cell of the proposed converter is composed of a double-cut slotted metallic split-ring and a metallic ground sheet separated by an F4B-2 substrate. Both numerical analysis and measured results demonstrate that the proposed converter has five plasmon resonance frequencies, and can near-completely convert the x- or y-polarized incident wave to its orthogonal counterpart in two frequency bands (9.5–12.9 GHz, 16.1–20.2 GHz). The corresponding polarization conversion ratio is more than 98.3% in the first frequency band and 99.7% in the second one. In addition, the bandwidths and central frequencies of the two frequency bands can be effectively tuned over a wide range by adjusting the geometrical dimensions of the metasurface, while the high conversion efficiency is preserved. The proposed polarization converter may have great potentials in electromagnetic polarization control applications.  相似文献   

15.
The power of several coherent laser beams can be transferred into a single diffraction-limited signal beam by photorefractive coupling. The efficiency of the power transfer is investigated experimentally in the case of two pump beams. Two different geometrical arrangements, one with overlapping (simultaneous) and the other with separate (sequential) pump beams are compared in a BaTiO3:Ce crystal, with diffusion-driven photorefraction. We measured about the same power transfer efficiency in both arrangements for strong signal beams, but the efficiency was higher in the sequential arrangement for weak signals. A simple theoretical model of the power transfer process based on the standard linear two-wave-mixing theory is presented and the observed stationary beam-coupling behavior for different pump-to-signal intensity ratios is found to be in qualitative agreement with the theoretical predictions. Received: 10 November 1998 / Revised version: 22 December 1998 / Published online: 24 March 1999  相似文献   

16.
A multi-focus optical fiber lens is numerically demonstrated based on an all-dielectric metasurface structure. The metasurface consists of an array of rectangular silicon resonators with varying widths in order to obtain the required phase distribution. The core diameter of the multimode fiber is large enough to contain sufficient resonance units. The spatial distribution of the dielectric resonators is dictated by spatial multiplexing, including interleaving meta-atoms and lens aperture division, to achieve multi-focus properties. The proposed optical fiber metalens can produce two or three focal points along the longitudinal direction with high focusing efficiency. The size of every focal point is close to the diffraction limit, and the relative intensity on each focus can be controlled by adjusting the number of the respective resonators. The proposed optical fiber lens will have a great potential in the fields of integrated optics and multifunctional micro/nano devices.  相似文献   

17.
18.
赵俊飞  张冶文  李云辉  陈永强  方恺  赫丽 《物理学报》2016,65(16):168801-168801
传统的四线圈磁共振耦合无线传能系统已在移动电子设备、电动汽车无线充电中得以应用,然而,其传能效率仍然因其磁场空间分布的发散性而难以提高.为了克服上述缺点,我们提出了一种基于环磁美特材料、磁场更为局域的高效无线传能系统.该系统将四线圈系统中的一对磁谐振耦合线圈替换为具有环磁谐振特性的四个非对称开口谐振环.该环磁模式具有高Q值、低金属损耗以及辐射抑制的特性.实验结果表明,相对于四线圈系统,该系统的磁场更为集中,能量传输效率更高.  相似文献   

19.
We theoretically propose a narrowband perfect absorber metasurface(PAMS) based on surface phonon polaritons in the terahertz range. The PAMS has unit cell consisting of a silver biarc on the top, a thin polar-dielectric in the middle and a silver layer at the bottom. The phonon polaritons are excited at the interface between the silver biarc and the polar dielectric, and enhance the absorption of the PAMS. The absorption peak is at 36.813 μm and the full width half maximum(FWHM) is nearly 36 nm, independent of the polarization and incidence angle. The electric fields are located at the split of the biarc silver layer and the quality factor Q is 1150. The FWHM decreases with the decreasing split width. When the thickness of the bottom layer is larger than 50 nm, the narrow band and high absorption are insensitive to the thickness of those layers. The designed absorber may have useful applications in terahertz spectra such as energy harvesting, thermal emitter, and sensing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号