首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
《Current Applied Physics》2018,18(5):551-558
Graphene hybrid materials have been attracting a great deal of attention due to their superior properties. Nevertheless, problems such as expensive and complicated production processes have limited their application to industrial fields. Here, we introduce a one-step synthesis of titanium carbide (TiC) nanoparticles on multilayer graphene nanosheet (TiC/multilayer graphene) composites using thermal plasma. Although there are three types of titanium alkoxides (titanium ethoxide, titanium isopropoxide and titanium n-butoxide), the TiC/multilayer graphene was synthesized from only titanium isopropoxide. The injection temperature of the precursor was varied to investigate the effects of the precursor concentration in the plasma region. A TiC/multilayer graphene hybrid material with crystalline TiC nanoparticles below 50 nm on graphene nanosheets was observed. The number of graphene nanosheet layers varied from one to over 10 according to the injection temperature. When titanium ethoxide and titanium butoxide were injected, TiC with amorphous carbon and graphite were synthesized. The formation of graphene is considered to be affected by the structure of the carbon chain in the precursors and the concentration in the plasma region.  相似文献   

2.
The Raman and photoluminescence spectra of short-period C/SiC superlattices produced by RF magnetron sputtering are investigated. The Raman data indicate that, in 35-period Sitall/Ni/[C/SiC] superlattices with the C and SiC effective thicknesses of 3.5 and 3 Å, respectively, subjected to postgrowth avalanche annealing, the carbon layers assume the structure of multilayer graphene with 3–5 graphene sheets per superlattice period. A method for the fabrication of graphene-like carbon structures on the basis of short-period superlattices grown by RF sputtering is suggested and implemented.  相似文献   

3.
植超虎  刘波  任丁  杨斌  林黎蔚 《物理学报》2013,62(15):156801-156801
用磁控溅射技术制备不同调幅波长 (L) 的W(Mo)/Cu纳米多层膜,所制膜系在60 keV氦离子 (He+) 辐照条件下注入不同剂量: 0, 1×1017 He+/cm2, 5×1017 He+/cm2. 用X射线衍射仪 (XRD) 和高分辨透射电子显微镜(TEM)表征W(Mo)/Cu纳米多层膜辐照前后微观结构. 研究结果表明: 1) He+离子轰击引起温升效应是导致沉积态亚稳相β-W 转变成稳态 α-W相的主因, 而与调幅波长无明确关联; 2) 纳米多层结构中W(Mo) 和Cu膜显现出的辐照耐受性与调幅波长相关, 调幅波长越小, 抗He+的辐照性能越强; 3) 在5×1017 He+/cm2注入条件下, 观察到He团簇/泡在纳米结构W(Mo) 和Cu膜中的积聚行为存在明显差异: 在W (Mo) 膜中He团簇/泡的分布与晶粒取向相关, He团簇/泡倾向于沿W (211) 晶面分布; 而Cu膜非晶化且He团簇/泡在其体内呈均匀分布. 关键词: W(Mo)/Cu纳米多层膜 +辐照')" href="#">He+辐照 He团簇/泡 相转变  相似文献   

4.
A hybrid anode system for lithium (Li) ion battery applications based on pulsed laser deposited silicon films on chemical vapor deposited multilayer graphene (MLG) layers on a nickel foam substrate was electrochemically characterized. The as-grown material was directly fabricated into an anode without a binder, and tested in a half-cell configuration. There is evidence of the participation of both the multilayer graphene and the Si in the transport of Li ions. Even when cycled under stressful voltage limits that accelerate degradation, the MLG–Si films displayed higher stability than Si-only anodes, especially at higher cycling rates. Unlike the Si cells that display capacity fade even within the first few cycles, the MLG–Si cells show a very narrow spread in capacity, indicative of the role of the graphene layers in improving adhesion of the Si and acting as a compliant buffer for its volume expansion. Stable average specific capacities of ~1,200 mAh/g per total weight of MLG + Si, over 80 cycles at C/5 rate, were obtained for the MLG–Si anode. Pre- and post-cycling characterization of the anode materials revealed the differences between the two systems.  相似文献   

5.
The dimensions of cluster phases that form on the surfaces of free Cu and Ag films in the case of different irradiation doses are estimated for the first time. It is shown that ion implantation leads to a significant decrease in the number of ions passed through a free film. Under the same conditions of the ion implantation, the concentration of impurity atoms on the surface and their depth-distribution profile for the free film differ noticeably from those for a bulk crystal.  相似文献   

6.
A. F. Komarov 《Technical Physics》2001,46(11):1465-1469
A physicomathematical model and a BEAM2HD program for the dynamic simulation of one-and two-beam high-dose ion implantation into multilayer and multicomponent targets are developed. The number of target layers is no more than three, and the number of sorts of atoms in each of the layers is no more than seven. The simulation is performed by the Monte Carlo method. Numerical results for the formation of C x→3N y→4 superhard layers by two-beam high-dose implantation of nitrogen ions into the Si3N4/C/Si3N4/Si system are presented.  相似文献   

7.
The distributions of positive carbon cluster ions produced by laser ablation of graphene (G) and graphene oxide (GO) are found to be quite different. Under a typical experimental condition, narrow distributions of even-numbered clusters from C60+ to C162+ were observed for G, and broad distributions including even-numbered clusters from C100+ to C400+ and odd-numbered clusters from C189+ to C395+ were observed for GO. The threshold of laser energy for G is lower than that of GO. Further results of collision-activated dissociation mass spectrometry indicate that the cluster ions generated from G are structurally similar but are different with those generated from GO or nanodiamonds. It is proposed that the experimentally observed difference can be attributed to the different mechanisms behind the process. A top-down mechanism including both direct transformation of G to fullerene and fragmentation of large-sized fullerenes is suggested for the generation of carbon cluster cations in the process of laser ablation of G. For GO, the experimental results are close to those of nanodiamonds and other materials reported previously and can be explained by the generally accepted bottom-up mechanism.  相似文献   

8.
A selective dealloying in bimetallic nanoclusters prepared by ion implantation has been found upon thermal annealing in oxidizing atmosphere or irradiation with light ions. In the first process, the incoming oxygen interacts preferentially with copper promoting Cu2O formation, therefore extracting copper from the alloy. In the second process the irradiation with Ne ions promotes a preferential extraction of Au from the alloy, resulting in the formation of Au-enriched "satellite" nanoparticles around the original AuxCu1-x cluster.  相似文献   

9.
We studied the oxidation resistance of graphene-coated Cu surface and its layer dependence by directly growing monolayer graphene with different multilayer structures coexisted, di-minishing the influence induced by residue and transfer technology. It is found that the Cu surface coated with the monolayer graphene demonstrate tremendous difference in oxidation pattern and oxidation rate, compared to that coated with the bilayer graphene, which is considered to be originated from the strain-induced linear oxidation channel in monolayer graphene and the intersection of easily-oxidized directions in each layer of bilayer graphene, respectively. We reveal that the defects on the graphene basal plane but not the boundaries are the main oxidation channel for Cu surface under graphene protection. Our finding indi-cates that compared to putting forth efforts to improve the quality of monolayer graphene by reducing defects, depositing multilayer graphene directly on metal is a simple and effective way to enhance the oxidation resistance of graphene-coated metals.  相似文献   

10.
A gradient structure was produced in a pure copper plate by means of surface mechanical attrition treatment (SMAT). The microstructure of the surface layer was reduced to nanoscale and the grain size increased gradually along the depth of the treated sample. In situ transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) observation was performed on the nanocrystalline copper after implantation of carbon. Carbon atoms first precipitated along the edges of the copper substrate or at the surface, then formed amorphous carbon layers. Subsequently, onion-like fullerenes were formed under electron-beam irradiation. The effects of ion implantation, electron beam irradiation, nanostructure of the substrate and interaction of C and Cu atoms on the formation of the onion-like fullerenes are discussed.  相似文献   

11.
The present work focuses on the assessment of two surface treatment procedures employed under ultra high vacuum conditions in order to obtain atomically clean graphene layers without disrupting the morphology and the two dimensional character of the films. Graphene layers grown by chemical vapor deposition on polycrystalline Cu were stepwise annealed up to 750 °C or treated by mild Ar+ sputtering. The effectiveness of both methods and the changes that they induce on the surface morphology and electronic structure of the films were systematically studied by X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. Ultraviolet photoelectron spectroscopy was employed for the study of the electronic properties of the as received sample and in combination with the work function measurements, indicated the hybridization of the C-π network with Cu d-orbitals. Mild Ar+ sputtering sessions were found to disrupt the sp2 network and cause amorphisation of the graphitic carbon. Annealing between 300 °C and 450 °C under ultra high vacuum proved to be an effective and lenient way for achieving an atomically clean graphene surface. At higher temperatures the rigid structure of graphene does not follow the expansion of the copper substrate leading to the graphene/Cu interface breakdown and possibly to further rippling of the graphene layers leaving bare areas of cooper substrate.  相似文献   

12.
An assembled CO2 gas cluster ion beam system was assessed using a retarding field analyzer and a time-of-flight mass spectrometer. The CO2 gas was expanded to form gas clusters at the input pressure of 1–5 bar through a quartz Laval nozzle. At 4 bar, it is confirmed that the clusters consisted of about 500 molecules. Also the dependence of the mean cluster size distribution on source temperature was examined. At the low fluence of ion beam, an isolated gas cluster ion impact on solid surfaces was investigated. CO2 gas cluster ions were irradiated at the acceleration voltage of 40–60 kV on highly oriented pyrolytic graphite. Si with native oxide layers, and Cu film deposited on Si wafer. After very short exposure of cluster ions, induced hillocks with about 0.8–1 nm in height and 20 nm in width were outgrown from the impacted surfaces. After prolonged irradiation on Si and Cu/Si, humping was more developed and consequently the surface morphology seemed to be saturated because of gradual filling the gap between the hillocks.  相似文献   

13.
The thermally controlled synthesis of graphene from propylene molecules on the Ni(111) surface in ultrahigh vacuum is studied by scanning tunneling microscopy and density functional theory. It is established that the adsorption of propylene on Ni(111) atomic terraces at room temperature results in the dehydration of propylene molecules with the formation of single-atomic carbon chains and in the complete dissociation of propylene at the edges of atomic steps with the subsequent diffusion of carbon atoms below the surface. The annealing of such a sample at 500°С leads to the formation of multilayer graphene islands both from surface atomic chains and by the segregation of carbon atoms collected in the upper nickel atomic layers. The process of formation of an epitaxial graphene monolayer until the complete filling of the nickel surface is controllably observed. Atomic defects seen on the graphene surface are interpreted as individual nickel atoms incorporated into graphene mono- or bivacancies.  相似文献   

14.
Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance---plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) filtered---pulsed cathodic arc discharge. The surface and mechanical properties of these films are compared using atomic force microscope-based tests. The experimental results show that hydrogenated DLC films are covered with soft surface layers enriched with hydrogen and sp$^{3}$ hybridized carbon while the soft surface layers of tetrahedral amorphous carbon (ta-C) films have graphite-like structure. The formation of soft surface layers can be associated with the surface diffusion and growth induced by the low-energy deposition process. For typical CVD methods, the atomic hydrogen in the plasmas can contribute to the formation of hydrogen and sp$^{3}$ hybridized carbon enriched surface layers. The high-energy ion implantation causes the rearrangement of atoms beneath the surface layer and leads to an increase in film density. The ta-C films can be deposited using the medium energy carbon ions in the highly-ionized plasma.  相似文献   

15.
We show experimentally that multilayer graphene grown on the carbon terminated SiC(0001[over ]) surface contains rotational stacking faults related to the epitaxial condition at the graphene-SiC interface. Via first-principles calculation, we demonstrate that such faults produce an electronic structure indistinguishable from an isolated single graphene sheet in the vicinity of the Dirac point. This explains prior experimental results that showed single-layer electronic properties, even for epitaxial graphene films tens of layers thick.  相似文献   

16.
Based on ab initio calculations, we study the effect of intercalating twisted bilayer graphene with carbon. Surprisingly, we find that the intercalant pulls the atoms in the two layers closer together locally when placed in certain regions in between the layers, and the process is energetically favorable as well. This arises because in these regions of the supercell, the local environment allows the intercalant to form tetrahedral bonding with nearest atoms in the layers. Intercalating AB- or AA-bilayer graphene with carbon does not produce this effect; therefore, the nontrivial effect owes its origin to both using carbon as an intercalant and using twisted bilayer graphene as the host. This opens new routes to manipulating bilayer and multilayer van der Waals heterostructures and tuning their properties in an unconventional way.  相似文献   

17.
We have investigated effects of surface hydrogenation on the topological properties of multilayer graphene by using density functional theory calculations and a tight-binding model. Hydrogen adsorption on a dimer site of a surface layer decouples the surface layer from the rest of the layers. Hydrogen adsorption on a nondimer site introduces a band mixing between the hydrogenated graphene and the rest of the graphene layers. The valley Hall effects and spin-valley-resolved Chern numbers of multilayer graphene, calculated as a function of the sublattice potential and the potential perpendicular to the layers, was found to be sensitive to details of inversion symmetry-breaking potentials. While the topological invariant depends on the adsorption site and spin polarization, surface-hydrogenated M-layer graphene was found to be topologically equivalent to (M-1)-layer graphene under inversion symmetry-breaking potentials regardless of the adsorption site.  相似文献   

18.
Dielectric layers with silver nanoparticles, which are synthesized in a soda-silicate glass by implantation of 60-keV ions with a dose of 7.0×1016 Ag+/cm2 at an ion current density of 10 μmA/cm2, are analyzed. The depth of silver distribution was measured by Rutherford backscattering. Data on optical characteristics of composite layers were obtained from the transmission spectra and from the reflection, which were measured both from the side of an implanted glass surface and from the unimplanted side. To calculate reflection spectra, a multilayer plane-parallel film structure was considered, which was modeled on the basis of the matrix method using complex Fresnel coefficients. Dielectric functions of separate layers were determined using the Maxwell-Garnet theory of an effective medium. A qualitative agreement between the experimental and the model optical spectra was obtained taking into account a nonuniform depth distribution of metal nanoparticles in a composite material.  相似文献   

19.
Two groups of Cr/Cu multilayer films were deposited on surfaces of Si (1 0 0) crystal and Al2O3 ceramic, respectively. One group was prepared by both metal vapor vacuum-arc (MEVVA) ion implantation and ion beam assistant deposition (IBAD) technologies with different sputtering ion densities and deposition times. The other group was prepared only by IBAD. The morphologies of the Cr/Cu films and cross-section micrographs were observed by scanning electron microscopy (SEM). Nanohardness, modulus, and adhesive strength of the Cr/Cu films were measured by a nano-indenter. Continuous stiffness measurement (CSM) was used while measuring nanohardness and modulus of the samples. The experimental data indicate that the adhesive strength of the samples prepared with MEVVA ion implantation was about 3-3.5 times higher than one of the corresponding samples prepared without MEVVA ion implantation. The nanohardness and modulus of the Cr/Cu films were obviously affected by the test parameters and substrate kind.  相似文献   

20.
The chalcopyrite semiconductor, Cu(InGa)Se2 (CIGS), is popular as an absorber material for incorporation in high-efficiency photovoltaic devices because it has an appropriate band gap and a high absorption coefficient. To improve the efficiency of solar cells, many research groups have studied the quantitative characterization of the CIGS absorber layers. In this study, a compositional analysis of a CIGS thin film was performed by depth profiling in secondary ion mass spectrometry (SIMS) with MCs+ (where M denotes an element from the CIGS sample) cluster ion detection, and the relative sensitivity factor of the cluster ion was calculated. The emission of MCs+ ions from CIGS absorber elements, such as Cu, In, Ga, and Se, under Cs+ ion bombardment was investigated using time-of-flight SIMS (TOF-SIMS) and magnetic sector SIMS. The detection of MCs+ ions suppressed the matrix effects of varying concentrations of constituent elements of the CIGS thin films. The atomic concentrations of the CIGS absorber layers from the MCs+-SIMS exhibited more accurate quantification compared to those of elemental SIMS and agreed with those of inductively coupled plasma atomic emission spectrometry. Both TOF-SIMS and magnetic sector SIMS depth profiles showed a similar MCs+ distribution for the CIGS thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号