首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用叔丁砷化氢(TBA)和叔丁磷化氢(TBP)的MOVPE已制成低阈值1.3μm的InGaAsP多量子阱(MQW)激光器。实验证明:与用常规的氢化物HsH3和PH3生长的四元InGaAsP材料相比,用TBA和TBP进行的四元材料生长可改善V族组分的可控性。从而使2英寸的InGaAsP MQW晶片的光致发光(PL)波长具有极好的均匀性,其标准偏差仅2.6nm,4.2K时,PL的最大半值全宽(FWHM  相似文献   

2.
本文报道用低压有机金属化合物化学气相淀积(LP-MOCVD)外延生长InGaAsP/InP应变量子阶材料,材料参数与外延条件的关系,量子阱器件的结构设计及其器件应用.用所生长的材料研制出宽接触阈值电流密度小于400A/cm2(腔长400μm),DC-PBH结构阈值7~12mA的1.3μm量子阱激光器和宽接触阈值电流密度小于600A/cm2(腔长400μm),DC-PBH结构阈值9~15mA的1.55μm量子阶激光器以及高功率1.3μm量子阱发光二极管和InGaAsPIN光电探测器.  相似文献   

3.
本文报道了利用低压金属有机物汽相外延(LP-MOVPE)技术,在(001)InP衬底上生长In_(1-x)Ga_xAs体材料及In_(1-x)Ga_xAs/InP量子阶结构材料的结果.对于TMG/TEIn源,In_(1-x)Ga_xAs材料的非故意掺杂载流子依匿为7.2×1016cm-3,最窄光致发光峰值半宽为18.9meV,转靶X光衍射仪对量子阶结构材料测到±2级卫星峰;而对于TMG/TMIn源,非故意掺杂载流于浓度为3.1×10 ̄15cm ̄(-3),最窄光致发光峰值半宽为8.9meV,转靶X光衍射仪对量子阶  相似文献   

4.
本文简要报告我们气态源分子束外延实验结果.材料是GaAs(100)衬底上外延的晶格匹配的Iny(Ga1-xAlx)1-yP(x=0~1,y=0.5),InGaP/InAlP多量子阱;在InP(100)衬底上外延的InP,晶格匹配的InGaAs、InAlAs以及InP/InGaAs、InP/InAsP多量子阱,InGaAs/InAlASHEMT等.外延实验是用国产第一台化学束外延(CBE)系统做的.  相似文献   

5.
本文研究了以InAlGaAs作垒层的InAlGaAs/GaAs量子阱的低压金属有机化合物化学汽相淀积(LP-MOCVD)生长及其界面特性,发现在适当生长条件下可以解决InGaAs和AlGaAs在生长温度范围不兼容的问题,得到了高质量的InAlGaAs/GaAs量子阱材料.同时用X光和低温光致发光(PL)谱研究了量子阱结构的界面特性,表明适当的界面生长中断不仅可以改善界面平整度,而且能改善垒层InAlGaAs的质量.  相似文献   

6.
采用VarianGenⅡMBE生长系统研究了InGaAs/GaAs应变层单量子阶(SSQW)激光器结构材料。通过MBE生长实验,探索了In_xGa_(1-x)tAs/GaAsSSQW激光器发射波长(λ)与In组分(x)和阱宽(L_z)的关系,并与理论计算作了比较,两者符合得很好。还研究了材料生长参数对器件性能的影响,主要包括:Ⅴ/Ⅲ束流比,量子阱结构的生长温度T_g(QW),生长速率和掺杂浓度对激光器波长、阈值电流密度、微分量子效率和器件串联电阻的影响。以此为基础,通过优化器件结构和MBE生长条件,获得了性能优异的In_(0.2)Ga_(0.8)As/GaAs应变层单量子阱激光器:其次长为963nm,阈值电流密度为135A/cm ̄2,微分量子效率为35.1%。  相似文献   

7.
报道了用低压金属有机化学汽相淀积(LP-MOCVD)技术在(100)InP衬底上生长InGaAsP体材料及InGaAsP(1.3μm)/InGaAsP(1.6μm)量子阱结构的生长条件和实验结果。比较了550℃和580℃两个生长温度下In1-xGaxAsyP1-y体材料及相应量子阱结构的特性,表明在580℃生长条件下,晶体具有更好的质量和特性。  相似文献   

8.
我们已研制出了用应变量子阱InGaAs-LD泵浦的掺镤(Pr)-氟化物光纤放大器模块(PDFA)。该放大器模块由4个泵浦LD和大NA低散射损耗的掺镤氟化物光纤组成。在1.30μm信号波长下,该模块最大信号增益为28.3dB,饱和输出功率为的6dBm。这是用于1.3μm波段光纤放大器最有希望的模块。  相似文献   

9.
利用时间光辨光谱技术,在11 ̄90K温度范围研究了不同阱宽的InGaAs/GaAs和InGaAs/AlGaAs应变层量子阱子带弛豫过程,讨论了这两种量子阱材料中不同散射机制的作用。  相似文献   

10.
为适应光谱分割技术的需求,我们采用InGaAsP/InP单量子阱外延片,用直接耦合的方法将超辐射发光管与半导体光放大器单片集成,制得了1.3μm长波长超辐射集成光源,取得了初步的实验结果,验证了这种长波长集成器件的可行性。脉冲输出功率与长波长超辐射发光管相比有很大提高。半导体光放大器的增益达到19dB。  相似文献   

11.
概述了InGaAs/GaAs异质结构材料用于制作微波器件的优越性,叙述了材料的MBE生长、输运特性和掺杂分布,以及用于制作Ku波段低噪声高增益HFET的结果:栅长0.5μm,12GHz下噪声系数0.93dB,相关增益9dB。  相似文献   

12.
我们对用GSMBE技术生长的In0.63Ga0.37As/InP压应变单单量子阱样品进行了变温光致发光研究,In0.63Ga0.37As阱宽为1nm到11nm,温度变化范围为10K到300K,发现不同阱宽的压变变量子 激子跃迁能量随温度的变化关系与体In0.53Ga0.47As材料相似,温度系数与阱宽无关,对1nm的阱,我们观察到其光致发光谱峰为双峰,经分析表明,双峰结构由量了阱界面起伏一个分子单  相似文献   

13.
用0.1μm赝配InAIAs-InGaAs-InPHEMT技术研制了覆盖整个W波段(75~110GHz)的单片平衡放大器。该放大器首次成功地制得75到11OGHz的增益为23士3dB,具有良好的反射损耗。这种放大器在94GHz附近的噪声系数约为6dB。据我们所知,在覆盖整个W波段单片放大器中,这是在带宽和高增益性能方面报道的最好结果。  相似文献   

14.
我国科学家在In(Ga)As自组织量子点激光器研究中获得突破。目前已经获得室温下PL峰值在1.3μm的量子点材料,朝1.3μm激光器迈出了一大步。In(Ga)As/GaAs量子点体系因其独特、优越的光电性质,成为替代目前InP基材料、制备光纤通讯用1、3μm长波激光器的热门材料之一,迄今已有美国德克萨斯大学、日本NEC实验室、日本富士通实验室,及德国PDI研究所和俄罗斯约飞研究所联合小组等几个研究小组成功制备了室温激射波长在1.3μm的量子点激光器。中国科学院半导体所是国内率先开展自组织量子点激…  相似文献   

15.
1.3μm低阈值InGaAsP/InP应变补偿MQW激光器的LP-MOCVD生长   总被引:1,自引:0,他引:1  
报道了用低压金属有机物化学气相淀积(LP-MOCVD)方法外延生长InGaAsP/InP应变补偿多量子阱结构。用此材料制备的掩埋异质结(BH)条形结构多量子阱激光器具有极低阈值电流4~6mA。20~40℃时特征温度T0高达67K,室温下外量子效率为0.3mW/mA。  相似文献   

16.
本文介绍了台湾用一塌信的光电器件近期的开发两头及研究成果。其中包括高性能1.55μm复耦合InGaAsP-InP分布反馈和1.3μm无致冷AlInGaAs-InP激光器,半绝缘衬底的InGaAs-InPp-i-n光探测器,0.98μmInGaAs-GsAs-InGaP泵浦激光器以及12信道的激光器和探测阵列。  相似文献   

17.
本文报道了用MBE-SPM联合系统对InAs/GaAs量子点进行准原位研究的初步结果.STM图像表明,在对n+-GaAs衬底进行脱氧处理后,通过生长GaAs缓冲层能有效的改善表面质量.在缓冲层上继续生长2单原子层InAs后形成了量子点.SPM与透射电子显微镜给出的量子点形貌的异同在文中也给出了合理的解释,该研究工作的进一步深入将对自组织生长量子点的生长机理的理解和样品质量的提高有重要意义.  相似文献   

18.
成功地用深能级瞬态谱(DLTS)研究了InAs自组织生长的量子点电学性质,获得2.5原子层InAs量子点电子基态能级在GaAs导带底下约0.13eV,该量子点在荷电状态发生变化时伴随有晶格弛豫,对应俘获势垒为0.32eV.本工作也证明可以把量子点类比深中心进行研究.  相似文献   

19.
在(100)和(111)BGaAs衬底上,同时用MOCVD生长出In0.14Ga0.86As多量子阱结构.对两种晶向的样品进行了低温(2K)光致发光谱特性对比研究,测量与理论计算的光发射能量对比表明:(100)面样品两者一致,而(111)B样品计算值比测量值高出10~15meV.这一差别用(111)B面量子阱中的压电效应产生的自建电场引起的发射能量红移作出解释.  相似文献   

20.
本文首次报道一种结构简单的1.55μmInGaAsP/InP部份增益耦合DFB激光器与电吸收调制器的单片集成器件.该器件采用脊波导进行横模限制,阈值电流范围为30~60mA,典型边模抑制比大于40dB,反向偏压3V时的消光比为11dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号