首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
正极材料LiNi0.5Mn1.5O4的合成及性能   总被引:1,自引:1,他引:1  
采用低温固相法制备镍锰复合草酸盐,煅烧后生成的镍锰复合氧化物与Li3CO3混合,在空气中于700 ℃反应12 h,得到LiNi0.5Mn1.5O4。通过XRD,SEM和恒电流充放电测试对样品进行了表征。XRD结果表明:复合草酸盐经390 ℃煅烧3 h,生成了多相氧化物;合成的LiNi0.5Mn1.5O4为纯相,具有立方尖晶石结构。电化学测试结果表明,合成的样品在室温和高温(55 ℃)下,具有较好的电化学性能;大电流充放电时,具有良好的循环性能。  相似文献   

2.
采用共沉淀法在一定温度、pH值和搅拌速度下合成了掺锰氢氧化镍活性材料。对合成产品进行了X射线衍射分析和电化学性能分析。XRD分析表明,掺锰氢氧化镍形成了α和β混合相的晶体结构。通过对其进行充放电测试,结果表明,氢氧化镍活性材料中添加适量的锰有利于提高镍电极的电化学性能。研究结果表明,当锰摩尔分数为10%时,镍电极的充电平台最低,析氧平台提高;放电平台较高,在1.2V以上,放电态电阻较小,放电比容量达到243.21mA·h/g;由于添加锰元素可能形成了部分α-Ni(OH)2,使摩尔镍电子转移数较大,接近1。对添加锰的镍电极进行多次循环测试表明其循环性能较好,容量稳定。  相似文献   

3.
段浩  张莹 《应用化学》2009,26(6):711-715
本文采用微乳法制备纳米氢氧化镍,采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒流充放电、循环伏安、交流阻抗等方法研究纳米氢氧化镍的微观结构、表面形貌和电化学性能。实验结果表明:140℃水热和微乳/水热两种方式处理得到的纳米氢氧化镍具有不同形貌特征。水热和微乳/水热处理虽然不影响纳米氢氧化镍的活化性能,但对纳米氢氧化镍的放电比容量影响很大,采用140℃水热和微乳/水热处理比单纯的微乳法制备得到的纳米氢氧化镍的放电比容量分别提高了62.6 mAh/g和112.8 mAh/g。而且,处理后的纳米氢氧化镍的循环伏安峰电流增大、电荷转移电阻由2.633 Ω分别降至2.464 Ω和1.679 Ω。  相似文献   

4.
以多孔氧化铝为模板, 在不同溶液浓度下, 用化学沉积法制备了氢氧化镍纳米管. 采用XRD, SEM, TEM和HRTEM等手段, 对产物的物相、表面形貌及微结构进行了表征. 结果表明所得产物是高纯度的氢氧化镍纳米管, 外径约为180~220 nm, 管壁厚20~30 nm. 将所制备的氢氧化镍纳米管制成电极, 其电化学性能测试表明, Ni(OH)2纳米管的中空结构特点, 能够有效地提高镍电极的充电效率、放电比容量、高倍率及高温放电性能. 机理分析表明中空结构的Ni(OH)2纳米管对于提高碱性二次电池的综合性能有着极为重要的意义.  相似文献   

5.
Ni(OH)2纳米管的制备、表征及电化学性能   总被引:3,自引:2,他引:3  
以多孔氧化铝为模板, 在不同溶液浓度下, 用化学沉积法制备了氢氧化镍纳米管. 采用XRD, SEM, TEM和HRTEM等手段, 对产物的物相、表面形貌及微结构进行了表征. 结果表明所得产物是高纯度的氢氧化镍纳米管, 外径约为180~220 nm, 管壁厚20~30 nm. 将所制备的氢氧化镍纳米管制成电极, 其电化学性能测试表明, Ni(OH)2纳米管的中空结构特点, 能够有效地提高镍电极的充电效率、放电比容量、高倍率及高温放电性能. 机理分析表明中空结构的Ni(OH)2纳米管对于提高碱性二次电池的综合性能有着极为重要的意义.  相似文献   

6.
用高精度非原位XRD结合Rietveld结构精修对固相法制备的正交层状LiMnO2(简写为o-LiMnO2)在电化学循环过程中的相变进行了研究。结果表明:首次循环就出现相变,循环5次后o-LiMnO2相变完全;产物中除了有类尖晶石型锰酸锂(Li0.86Mn0.14)(Mn0.92Li0.08)2O4(Fd3m)外,还证实了文献的理论计算和晶体学推测出的岩盐型锰酸锂(Li,Mn)O2(Fd3m)的存在;并定量计算了两物相的相含量。证实两物相均参与了电化学循环,其中类尖晶石型锰酸锂对电化学容量的变化起主要作用;岩盐型锰酸锂在电化学循环过程中逐渐向类尖晶石型锰酸锂转变,使电极的放电容量不断增加,这种转变停止时,放电容量达到最大,活化过程结束。  相似文献   

7.
本文通过XRD、SEM、EDS研究了Ti0.4Zr0.1V1.1Mn0.5Cr0.1Nix(x=0,0.2,0.4,0.6,0.8)合金的相结构和电化学性能。该合金系由BCC结构的V基固溶体主相和六方结构的C14 Laves第二相组成,Ni能够促进第二相的生成,Ni含量的增加导致了各相中的化学组成和晶格参数的变化,并通过电化学方法研究了Ni含量对0.4Zr0.1V1.1Mn0.5Cr0.1合金电极的最大放电容量、自放电性能、高倍率放电性能、循环稳定性能等的影响。  相似文献   

8.
以二氧化锰和氢氧化锂为原料,通过熔融浸渍法合成具有尖晶石构型的单晶锰酸锂。前驱体β-MnO2以乙酸锰和过硫酸钠为原料通过水热反应合成。基于TGA/DTA测试,确定了单晶锰酸锂的煅烧温度为470℃预烧5h,再升温至750℃保温12h。XRD,FTIR和SEM结果表明,合成的单晶锰酸锂具有均一的棒状结构以及良好的结晶性。电化学性能测试结果表明材料在0.1C倍率下充放电时,其首次放电比容量可达126mAh·g-1,且在一百次循环之后容量保持率为91%。  相似文献   

9.
采用溶胶-凝胶法制备了一系列富锂锰基正极材料xLi2MnO3?(1-x)LiNi0.5Mn0.5O2(x=0.1-0.8),通过X射线衍射(XRD)仪,扫描电子显微镜(SEM)和电化学测试等检测手段表征了所得样品的晶体结构与电化学性能,研究了不同组分下富锂材料的结构与电化学性能.结果表明:Li2MnO3组分含量较高时,材料的首次放电容量较高,但循环稳定性较差;该组分含量较少时,所得样品中出现尖晶石杂相,且放电容量较低,但循环稳定性较好;综合来看,x=0.5时材料的电化学性能最优.x=0.4,0.6时材料也表现出了较好的电化学性能,值得关注.  相似文献   

10.
以LiOH·H2O、Ni(OAc)2·4H2O、Co(OAc)2·4H2O和MnO2为原料,在水热反应釜中预处理,然后进行高温固相反应,合成了一系列锂镍钴锰氧化物LiNi0.75-xCoxMn0.25O2(x=0.05,0.10,0.15,0.20,0.25)。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌、粒径及电化学性能进行了表征。结果表明,当x=0.20时,所合成的正极材料具有很好的α-NaFeO2型层状晶体结构,晶胞参数a=0.286 1 nm,c=1.416 4 nm, V=0.100 4 nm3,以50 mA·g-1的电流密度在3~4.3 V(vs Li/Li+)充放电时,首次放电比容量达172.5 mAh·g-1,首次放电效率高达90.9%,30个循环后其放电比容量依然保持在161.1 mAh·g-1。  相似文献   

11.
The effects of manganese on the structure and electrochemical performance of Al-substituted α-Ni(OH)2 prepared by a chemical co-precipitation method were studied. The results of XRD and IR showed that the Al-substituted Ni(OH)2 with various Mn contents are typical α-phase. The Mn-free sample is labile in alkaline media and partly converted to β-Ni(OH)2. The stability of the samples improves with the increase in Mn content. The results of galvanostatic charge-discharge experiments showed that the addition of Mn increases the difference between the oxygen evolution and charge potentials, which improves the charge efficiency and increases the discharge capacity. The Mn-containing samples display better cycle stability than the Ni/Al sample without Mn. The Al-substituted Ni(OH)2 sample with Mn 9.3% shows the highest discharge capacity during the whole cycle, and the largest discharge capacity is 260 mAh g−1 .The electrochemical transfer resistance (R t) value decreases with the increase of Mn content.  相似文献   

12.
采用缓冲溶液法制备复合掺杂Mn、Mg的正极材料Ni0.82Mn0.18-xMgx(OH)2(x=0.06、0.09、0.12)。采用XRD、XPS和SEM等测试表征材料的晶体结构、锰价态和形貌,采用循环伏安和恒流充放电测试研究Mn、Mg不同掺杂比例对氢氧化镍电化学性能的影响。结果表明,Mn、Mg掺杂样品均为β相,晶粒细化;Ni0.82Mn0.09Mg0.09(OH)2样品具有优异的电极反应可逆性和充放电性能,100 mA·g^-1电流密度下的放电比容量(290.6 mAh·g^-1)优于商用β-Ni(OH)2(281.1 mAh·g^-1);且500 mA·g^-1电流密度下循环30圈后,Ni0.82Mn0.09Mg0.09(OH)2的放电比容量未见衰减,其循环稳定性优于商用β-Ni(OH)2。  相似文献   

13.
Nano-scale nickel hydroxide was prepared by precipitate transformation method in the paper. Effect of rinse pH on the agglomeration degree and electrochemical performance of nano-scale Ni (OH)2 was investigated. The measurement results of XRD and TEM indicate that the prepared nano-scale Ni (OH)2 is β (II)-phase, the grain size is in the rang of 10 ~ 50nm, and rinse pH exerts a great influence on the agglomeration degree of nano-scale Ni(OH) 2.The agglomeration of material becomes very obvious when rinse pH = 11, and the density of nano-scale Ni(OH)2 is enhanced obviously. Cyclic voltammetry(CV) and simulate cells experiment show that nano-scale Ni(OH)2 with suitable agglomeration degree have better electrochemical CV performance than those with ideal disperse Ni (OH)2and micron Ni(OH)2, and its proton diffusion coefficient is also the highest. It can elevate the discharge potential platform and prolongs discharge time, so the utilization ratio of Ni (OH)2 is raised.``  相似文献   

14.
以β-Ni0.9Co0.05Mn0.025Mg0.025(OH)2和LiOH.H2O为原料通过高温固相法合成了球形LiNi0.9Co0.05Mn0.025Mg0.025O2。采用热重-差热分析了反应过程,采用X射线衍射和扫描电镜对粉末的结构和形貌进行了表征。采用充放电测试和循环伏安测试对材料电化学性能进行了研究。结果表明:750℃煅烧12 h合成的LiNi0.9Co0.05Mn0.025Mg0.025O2为Li原子混排较少的良好层状结构,二次颗粒尺寸在15μm左右,且具有最高的放电比容量和良好的循环性能,在0.2C,2.8~4.3 V的条件下,首次放电比容量达207 mAh.g-1,40次循环后容量保持率为92.5%。  相似文献   

15.
We report on the synthesis, characterization, and electrochemical application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-coated Ni(OH)2 tubes with mesoscale dimensions. These composite tubes were prepared via a two-step chemical precipitation within an anodic alumina membrane under ambient conditions. The morphology and structure of the as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM) equipped with energy dispersive spectroscopy (EDS). The results showed that the size of the tubes was of mesoscale dimension and the proportion of the tube morphology was about 95%. The as-prepared composite tubes were further investigated as the positive-electrode materials of rechargeable alkaline batteries. Electrochemical measurements revealed that the Ni(OH)2 tubes coated with Ca(OH)2, Co(OH)2, and Y(OH)3 exhibited superior electrode properties including high discharge capacity, excellent high-temperature and high-rate discharge ability, and good cycling reversibility. The mechanism analysis suggests that both the coated layers and the unique hollow-tube structures play an indispensable role in optimizing the electrochemical performance of nickel hydroxide electrodes.  相似文献   

16.
通过控制结晶法和浓度梯度进料的方式制备了Ni、Co和Mn三元素组分含量呈全梯度分布的类球形Ni0.7Co0.15Mn0.15(OH)2前驱体,与LiOH·H2O均匀混合并焙烧后获得LiNi0.7Co0.15O2正极材料,系统研究了不同焙烧温度对材料Ni、Co和Mn三元素扩散情况、晶体结构及电化学性能的影响规律。通过能谱仪(EDXS)分析不同焙烧温度下材料颗粒中Ni、Co、Mn三元素的扩散程度。研究结果表明,在800℃下焙烧得到的正极材料梯度分布特征明显且电化学性能最佳,首次放电比容量为186.1 mAh·g-1(2.8~4.3 V,0.2C),2C大倍率充放电条件下循环200次后容量保持率为90.1%。这种材料兼具高比容量及良好的循环稳定性,可以用作下一代高能量密度锂离子电池正极材料。  相似文献   

17.
通过控制结晶法和浓度梯度进料的方式制备了Ni、Co和Mn三元素组分含量呈全梯度分布的类球形Ni0.7Co0.15Mn0.15(OH)2前驱体,与LiOH·H2O均匀混合并焙烧后获得LiNi0.7Co0.15Mn0.15O2正极材料,系统研究了不同焙烧温度对材料Ni、Co和Mn三元素扩散情况、晶体结构及电化学性能的影响规律。通过能谱仪(EDXS)分析不同焙烧温度下材料颗粒中Ni、Co、Mn三元素的扩散程度。研究结果表明,在800℃下焙烧得到的正极材料梯度分布特征明显且电化学性能最佳,首次放电比容量为186.1 mAh·g-1(2.8~4.3 V,0.2C),2C大倍率充放电条件下循环200次后容量保持率为90.1%。这种材料兼具高比容量及良好的循环稳定性,可以用作下一代高能量密度锂离子电池正极材料。  相似文献   

18.
Aluminum-cobalt co-substituted α-Ni(OH)2 was prepared by means of the titration method in a buffer solution, the structure was characterized by XRD analysis. With above mentioned α-Ni(OH)2 as the positive electrode of a nickel-metal hydride cell, the discharge performances were examined by constant-current charge-discharge experiments. In comparison with the electrodes made of aluminum substituted or cobalt substituted Ni(OH)2 materials, the aluminum-cobalt co-substituted composite electrodes possess an excellent electrochemical performance and are of practical significance.  相似文献   

19.
采用沉淀法制备了尖晶石型LiMn2O4和LiNiyCo0.1-yMn1.9O4 (y=0, 0.05, 0.1)正极材料. 应用FT-IR、XRD和SEM技术对不同掺杂样品的相结构与形貌进行了表征, 并用恒电流充放电测试和电化学阻抗技术研究了样品的电化学行为. FT-IR、XRD和SEM结果显示: 随着掺杂型LiNiyCo0.1-yMn1.9O4 样品中Ni含量的减少, 位于519 cm-1处的红外峰向高频方向移动; Ni、Co 或Ni/Co的掺杂降低了LiMn2O4的晶格参数; 掺杂型 LiNiyCo0.1-yMn1.9O4 样品具有更好的分散度和小的粒径. 电化学实验结果表明, 不同成分的掺杂导致电化学性能改善的原因不尽相同. 其中LiNi0.05Co0.05Mn1.9O4样品因其较低的电化学极化和较大的Li+扩散系数而具有较好的电化学性能.  相似文献   

20.
使用草酸盐共沉淀法合成了LiNi0.5Mn0.5O2, 并研究了共沉淀时的pH条件对终产物的结构、形貌及电化学性能的影响. 采用X射线衍射(XRD)和扫描电镜(SEM)表征了在pH值为4.0、5.5、7.0和8.5时得到的共沉淀和终产物LiNi0.5Mn0.5O2的结构和形貌. 使用充放电实验研究了不同pH条件下得到的LiNi0.5Mn0.5O2的电化学性能. 结果表明, pH为7.0时, 合成的材料颗粒更小、分布最均匀, 材料具有良好的层状特征, 且材料中锂镍的混排程度最小. 电化学测试结果印证了pH为7.0时合成的材料具有更好的电化学性能, 在0.1C的倍率下, 材料的首次放电比容量达到了185 mAh·g-1, 在循环20周后, 放电比容量仍然保持在160 mAh·g-1. X射线光电子能谱(XPS)测试结果表明, pH为7.0时合成的LiNi0.5Mn0.5O2中Ni为+2价, Mn为+4价.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号