首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electroconvulsive shock (ECS) in rats produced a generalized seizure which was followed by an opiate-like catalepsy and an increase in hot-plate escape latencies. Preinjection of naloxone, at doses of 3.0 and 10.0 mg/Kg, significantly diminished the ECS-induced increase in hot-plate latencies. Paradoxically, simultaneous measurement of tail-flick latencies in these same rats demonstrated opiate-agonist effects of naloxone. The cataleptic effects of ECS were demonstrated to be opiate-like by evaluating righting reflexes, grid responses, and haloperidol effects. Colonic temperatures were also measured in all animals. These data, collectively discussed relative to affective and reflexive components of nociceptive behaviors, support the hypothesis that selective endorphin systems are activated by ECS. Moreover, these observations suggest consideration of a role for endorphin systems in the therapeutic mechanisms of electroconvulsive therapy (ECT) in man.  相似文献   

2.
Some effects of calcitonin (CT) can also be produced by calcitonin gene-related peptide (CGRP), an alternative product of the calcitonin gene. This might be mediated by interaction of CGRP at the CT-receptor site. The human breast cancer cell line T47D possesses well characterized CT-receptors (KD = 2.3 x 10(-10) M for 125I salmon CT). 50% inhibition of 125I-sCT binding was achieved with 10(-9) M sCT, 5 x 10(-6) M rat CGRP and 10(-5) M human CGRP. Half maximal cAMP production in T47D cells was seen with 6 x 10(-10) M sCT, 5 x 10(-6) M rCGRP and 10(-5) M hCGRP. Binding and displacement capacity as well as the biological activity of CT and CGRP seems to correlate well. These findings suggest that CGRP in pharmacological doses acts via the CT-receptor. This could be explained by the homology and conformational similarities between CT and CGRP.  相似文献   

3.
Antinociceptive mechanisms of orally administered decursinol in the mouse   总被引:7,自引:0,他引:7  
Choi SS  Han KJ  Lee JK  Lee HK  Han EJ  Kim DH  Suh HW 《Life sciences》2003,73(4):471-485
Antinociceptive profiles of decursinol were examined in ICR mice. Decursinol administered orally (from 5 to 200 mg/kg) showed an antinociceptive effect in a dose-dependent manner as measured by the tail-flick and hot-plate tests. In addition, decursinol attenuated dose-dependently the writhing numbers in the acetic acid-induced writhing test. Moreover, the cumulative response time of nociceptive behaviors induced by an intraplantar formalin injection was reduced by decursinol treatment during the both 1st and 2nd phases in a dose-dependent manner. Furthermore, the cumulative nociceptive response time for intrathecal (i.t.) injection of TNF-alpha (100 pg), IL-1 beta (100 pg), IFN-gamma (100 pg), substance P (0.7 microg) or glutamate (20 microg) was dose-dependently diminished by decursinol. Intraperitoneal (i.p.) pretreatment with yohimbine, methysergide, cyproheptadine, ranitidine, or 3,7-dimethyl-1-propargylxanthine (DMPX) attenuated inhibition of the tail-flick response induced by decursinol. However, naloxone, thioperamide, or 1,3-dipropyl-8-(2-amino-4-chloro-phenyl)-xanthine (PACPX) did not affect inhibition of the tail-flick response induced by decursinol. Our results suggests that decursinol shows an antinociceptive property in various pain models. Furthermore, antinociception of decursinol may be mediated by noradrenergic, serotonergic, adenosine A(2), histamine H(1) and H(2) receptors.  相似文献   

4.
The effects of the superactive agonist analog D-Trp-6-LH-RH were investigated in several neuropharmacological tests: inhibition of picrotoxin-induced seizures, open-field behavior, hot-plate and tail-flick tests, assessment of catalepsy and apomorphine-induced cage-climbing. In most tests, D-Trp-6-LH-RH was administered subcutaneously (sc.) at the dose of 100 micrograms/kg. The opiate involvement in the peptide action was checked by using naloxone HCl (NX) in a dose of 1 mg/kg intraperitoneally (ip.), with the exception of the analgesic tests where the dose was 0.5 mg/kg. The analog significantly suppressed the open-field parameters of ambulation, rearing and grooming; except for grooming, these actions were fully antagonized by NX. Similarly, NX pretreatment restored to the control levels the latencies of seizure parameters increased by D-Trp-6-LH-RH. The hot-plate latencies did not change after pretreatment with NX but the opiate antagonist was fully able to antagonize the analgesic effect of the peptide in the tail-flick test. The cataleptogenic effect and the inhibition of apomorphine-induced cage-climbing demonstrated after D-Trp-LH-RH were not antagonized by NX.  相似文献   

5.
Helodermin-like and salmon calcitonin (sCT)-like immunoreactivities co-existed in a subset of human calcitonin (hCT)-containing cells in normal human thyroid tissue and medullary thyroid carcinomas. Helodermin/sCT-immunoreactive cells were mostly different from calcitonin gene-related peptide (CGRP)-positive cells. Helodermin and sCT immunoreactivities were not identified in pulmonary and pancreatic hCT-positive neuroendocrine tumors, except for a few lung tumor cells showing positive staining with one of two sCT antisera used. Helodermin immunoreactivity demonstrated by rabbit antiserum R0086 was completely abolished in the presence of synthetic sCT, while sCT immunoreactivity was not absorbed by synthetic helodermin. The carboxyl terminal Arg30-Thr31 sequence (and Pro35 amide structure) of helodermin would be the epitopic site recognized by this antiserum, since a similar amino acid sequence is present in sCT molecules but absent from hCT and CGRP.  相似文献   

6.
The present investigation was undertaken to determine the antinociceptive potency and possible neurotoxic effects of a substance P (SP) receptor antagonist, [D-Arg,D-Trp,Leu]SP (Spantide), after intrathecal injection in mice. After the nociceptive tests had been carried out, the animals were sacrificed and the spinal cords were investigated for histopathological changes, since such have been reported previously to occur in rats. It was found that the reaction latency in the tail-flick test increased in the dose range 0-10 micrograms. The effect was maximal at 10 and 45 min after 10 micrograms Spantide, and somewhat lower when 5 micrograms was used. None of the animals showed the complete motor impairment reported previously to occur after intrathecal administration in rats. In some of the mice we observed a slight rigidity in the hind-legs. At histopathological examination, it was found that Spantide produced no histological changes indicative of 'neurotoxic' effects. In agreement with this, the immunohistochemical evaluation, using calcitonin gene-related peptide (CGRP) as a marker for motoneurons and central branches of primary sensory neurons, did not provide evidence that the intrathecal injection of 10 micrograms Spantide produced any effects when compared to vehicle-injected animals. In conclusion, the present results demonstrate an antinociceptive effect of Spantide when injected intrathecally in mice, and that this occurred without any signs of toxic reactions in spinal cord as previously has been reported for the rat.  相似文献   

7.
Hingtgen CM 《生理学报》2008,60(5):581-583
Neurofibromatosis type 1 (NF1) is a common autosomal dominant disease characterized by formation of multiple benign and malignant tumors. People with this disorder also experience chronic pain, which can be disabling. Neurofibromin, the protein product of the Nfl gene, is a gnanosine triphosphatase activating protein (GAP) for p21Ras (Ras). Loss of Nfl results in an increase in activity of the Ras transduction cascade. Because of the growing evidence suggesting involvement of downstream components of the Ras transduction cascade in the sensitization of nociceptive sensory neurons, we examined the stimulus-evoked release of the neuropeptides, substance P (SP) and calcitonin gene-related peptide (CGRP), from primary sensory neurons of mice with a mutation of the Nfl gene (NfI 1-). Measuring the levels of SP and CGRP by radioimmunoassay, we demonstrated that capsaicin-stimulated release of neuropep-tides is 3-5 folds higher in spinal cord slices from Nfl 1-mice than that from wildtype mouse tissue. In addition, the potassium- and capsaicin-stimulated release of CGRP from the culture of sensory neurons isolated from Nfl 1- mice was more than double that from the culture of wildtype neurons. Using patch-clamp electrophysiological techniques, we also examined the excitability of capsaicin-sensitive sensory neurons. It was found that the number of action potentials generated by the neurons from Nfl 1- mice, responsing to a ramp of depolarizing current, was more than three times of that generated by wildtype neurons. Consistent with that observation, neurons from Nfl 1- mice had lower firing thresholds, lower rheobase currents and shorter firing latencies compared with wildtype neurons. These data clearly demonstrate that GAPs, such as neurofihromin, can alter the excitability of nociceptive sensory neurons. The augmented response of sensory neurons with altered Ras signaling may explain the abnormal pain sensations experienced by people with NFI and suggests an important role of GAPs in the mechanism of sensory neuron sensitization.  相似文献   

8.
Amylin receptors mediate the anorectic action of salmon calcitonin (sCT)   总被引:1,自引:0,他引:1  
The teleost salmon calcitonin (sCT), but not mammalian CT, shows similar biologic actions in the skeletal muscle as amylin and calcitonin gene-related peptide (CGRP). The peptides have also been shown to reduce food intake in rams. Because sCT, but not amylin, binds irreversibly to amylin binding sites, the aim of the present study was to compare the anorectic potency of both peptides. To determine whether sCT reduces food intake through interaction with amylin binding sites, we also tested whether appropriate antagonists (CORP 8-37, AC 187) attenuate the anorectic effect of sCT. Finally, we wanted to know whether rat calcitonin (rCT) and sCT reduce food intake to the same extent. Peptides were injected intraperitoneally at dark onset in 24 h food-deprived rats. At doses of 5 or 0.5 microg/kg, the anorectic effect of sCT was more potent and lasted much longer (e.g. 5 microg/kg: sCT > 10 h; amylin approx. 2 h) than that of amylin. Both CORP 8-37 and AC 187 (10 microg/kg) markedly reduced the anorectic action of sCT (0.5 microg/kg). In contrast to sCT, rCT (0.5 microg/kg) had no effect on food intake. It is concluded that sCT s anorectic effect is partly mediated by amylin receptors. Irreversible binding of sCT to amylin receptors may lead to a stronger and prolonged effect in comparison to amylin due to a sustained activation of the binding sites. Similar to other actions of CTs, the anorectic potency of sCT in rats was higher than that of mammalian (rat) CT. This agrees with binding profiles of amylin, sCT, and rCT at amylin binding sites as observed in in vitro studies.  相似文献   

9.
The dynamics of nociceptive reactions and character of 3H-naloxone binding to hypothalamus and midbrain synaptic membranes were studied in rats subjected to repeated cold swim stress (3 min. daily during 3, 5 and 15 days). It was shown that an increase of latencies of background nociceptive reactions (hot-plate and tail-flick tests) was accompanied by an ambiguous changes of kinetic parameters of 3H-naloxone binding in the studied brain structures. The results suggest that an increase of antinociceptive systems tone under repeated cold swim stress may be caused by a dynamic transformation of opiate u-receptor apparatus in various brain structures.  相似文献   

10.
The distribution of binding site for [125I]-eel-calcitonin (ECT) to rat central nervous system, studied by an autoradiographic technique, showed concentrations of binding in the diencephalon, the brain stem and the spinal cord. Large accumulations of grains were seen in the hypothalamus, the amygdala, in the fasciculus medialis prosencephali, in the fasciculus longitudinalis medialis, in the ventrolateral part of the periventricular gray matter, in the lemniscus medialis and in the raphe nuclei. The density of grains in the reticular formation and in the nucleus tractus spinalis nervi trigemini was more moderate. In the spinal cord, grains were scattered throughout the dorsal horns. Binding of the ligand was displaced equally by cold ECT and by salmon CT(sCT), indicating that both peptides bind to the same receptors. Human CT was much weaker than sCT in displacing [125I]-ECT binding. The administration of ECT into the brain ventricles of rats dose-dependently induced a significant and long-lasting enhancement of hot-plate latencies comparable with that obtained with sCT. The antinociceptive activity induced by ECT is compatible with the topographical distribution of binding sites for the peptide and is a further indication that fish CTs are active in the mammalian brain.  相似文献   

11.
We have investigated the effect of calcitonin (CT) on adenylate cyclase in membranes from different rat brain areas. Salmon calcitonin (sCT) dose-dependently inhibited the enzyme activity in midbrain, hypothalamus, medulla, pons and caudate nucleus, but was ineffective in adenohypophysis. The inhibitory effect was enhanced by GTP. Comparison of calcitonins of different origin indicated that sCT was the most potent in inhibiting the enzyme in hypothalamic membranes, eel CT (eCT) was slightly less potent, and human CT (hCT) was ineffective. Chronic I.C.V. pretreatment with sCT did not modify the subsequent in vitro sensitivity of adenylate cyclase to sCT. It is concluded that some of CNS actions of CT might involve modulation of intracellular cAMP levels.  相似文献   

12.
To determine whether or not the CNS inhibitory activity of eel calcitonin (eCT) on adenylyl cyclase is the endocellular mechanism underlying the antinociceptive effect of the peptide, as shown for morphine analgesia, we administered Bordetella pertussis toxin (PTX) by intracerebroventricular (ICV) injection (0.5 microgram/rat) to block the receptor-mediated inhibition of adenylyl cyclase. In PTX-treated rats there was no change in eCT (2.5 micrograms/rat, ICV)-induced antinociceptive activity (hot-plate test) nor in eCT (100 ng/rat, ICV) inhibition of gastric acid secretion (Shay test) whereas morphine (5 micrograms/rat, ICV) analgesia was significantly reduced. In vitro studies showed no reduction of eCT binding in the CNS of rats treated with PTX in vivo. Moreover, PTX treatment did not change the inhibitory effect of eCT on adenylyl cyclase in isolated membranes from rat striatum in contrast with opiates (DAME and morphine) whose effects were lost. As PTX is known to inactivate the guanidine binding inhibitory protein Gi, these data suggest that a G protein, distinct from the Gi protein involved in the coupling of opiate receptors into a functional response, could be responsible for regulating the intracellular pathways resulting in eCT-induced antinociceptive effect and inhibition of gastric acid secretion.  相似文献   

13.
M J Twery  R L Moss 《Peptides》1985,6(3):373-378
Individual neurons in the hypothalamus, thalamus, cortex, and other forebrain areas of urethane-anesthetized, male rats were iontophoretically tested for their membrane sensitivity to salmon calcitonin (CT), human CT, and CT gene-related peptide (CGRP). Extracellular recording of unit activity revealed that depression of neuronal firing was the predominant effect of iontophoretically applied salmon CT (35 of 74 cells tested). Few neurons responded to salmon CT with an increase in firing rate (N = 3). When CGRP was iontophoretically applied a pattern of response resembling that of salmon CT was observed. CGRP was predominantly inhibitory and excited those neurons whose firing rate was increased by salmon CT. Inhibition was also the predominant effect of human CT. However, no neurons were excited by human CT. The results clearly demonstrate that a subpopulation of neurons with membrane sensitivity to salmon CT, human CT, and CGRP are present in the rat forebrain. This finding suggests that modulation of neuronal activity may underlie the behavioral and biochemical effects of these peptides when administered centrally. Endogenous CGRP and CT-like peptides in rat brain may be capable of regulating these events as neurotransmitters or neuromodulators.  相似文献   

14.
Mitragynine is an indole alkaloid isolated from the Thai medicinal plant Mitragyna speciosa. We previously reported the morphine-like action of mitragynine and its related compounds in the in vitro assays. In the present study, we investigated the opioid effects of 7-hydroxymitragynine, which is isolated as its novel constituent, on contraction of isolated ileum, binding of the specific ligands to opioid receptors and nociceptive stimuli in mice. In guinea-pig ileum, 7-hydroxymitragynine inhibited electrically induced contraction through the opioid receptors. Receptor-binding assays revealed that 7-hydroxymitragynine has a higher affinity for micro-opioid receptors relative to the other opioid receptors. Administration of 7-hydroxymitragynine (2.5-10 mg/kg, s.c.) induced dose-dependent antinociceptive effects in tail-flick and hot-plate tests in mice. Its effect was more potent than that of morphine in both tests. When orally administered, 7-hydroxymitragynine (5-10 mg/kg) showed potent antinociceptive activities in tail-flick and hot-plate tests. In contrast, only weak antinociception was observed in the case of oral administration of morphine at a dose of 20 mg/kg. It was found that 7-hydroxymitragynine is a novel opioid agonist that is structurally different from the other opioid agonists, and has potent analgesic activity when orally administered.  相似文献   

15.
Prenatal exposure of rats to 0.2 mg LAAM/kg/day but not to 0.05 mg LAAM/kg/day resulted in faster hot-plate escape latencies in 6 mo old offspring. No differences in tail-flick latencies were observed at 7 mo of age in offspring exposed to either dose of LAAM prenatally. Subsequent testing of littermates at 16 mo of age revealed that the greater sensitivity to the hot-plate observed in rats prenatally exposed to LAAM is apparently a result of neonatal withdrawal rather than a primary consequence of the drug. The data are discussed in relation to possible effects of drug or withdrawal on central nervous system development.  相似文献   

16.
Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are potent vasodilators and exert positive chronotropic and inotropic effects on the heart. Receptors for CGRP and AM are calcitonin receptor-like receptor (CLR)/receptor-activity-modifying protein (RAMP) 1 and CLR/RAMP2 heterodimers, respectively. The present study was designed to delineate distinct cardiovascular effects of CGRP and AM. Thus a V5-tagged rat CLR was expressed in transgenic mice in the vascular musculature, a recognized target of CGRP. Interestingly, basal arterial pressure and heart rate were indistinguishable in transgenic mice and in control littermates. Moreover, intravenous injection of 2 nmol/kg CGRP, unlike 2 nmol/kg AM, decreased arterial pressure equally by 18 +/- 5 mmHg in transgenic and control animals. But the concomitant increase in heart rate evoked by CGRP was 3.7 times higher in transgenic mice than in control animals. The effects of CGRP in transgenic and control mice, different from a decrease in arterial pressure in response to 20 nmol/kg AM, were suppressed by 2 micromol/kg of the CGRP antagonist CGRP(8-37). Propranolol, in contrast to hexamethonium, blocked the CGRP-evoked increase in heart rate in both transgenic and control animals. This was consistent with the immunohistochemical localization of the V5-tagged CLR in the superior cervical ganglion of transgenic mice. In conclusion, hypotension evoked by CGRP in transgenic and control mice was comparable and CGRP was more potent than AM. Unexpectedly, the CLR/RAMP CGRP receptor overexpressed in postganglionic sympathetic neurons of transgenic mice enhanced the positive chronotropic action of systemic CGRP.  相似文献   

17.
The influence of rat calcitonin gene-related peptide (rCGRP) on the secretion of gastric somatostatin and gastrin was studied in vitro using the isolated, vascularly perfused rat stomach preparation. rCGRP stimulated somatostatin secretion dose-dependently reaching 3-fold stimulation at 1 microM. The kinetics of somatostatin response were characterized by a sharp increase in the initial phase of rCGRP perfusion followed by sustained elevated levels. Gastrin secretion was moderately suppressed at 1 nM to 100 nM CGRP. Somatostatin responses to half-maximal stimulation with 100 nM CGRP were not affected by concomitant perfusion of atropine, propranolol, and tetrodotoxin. It is concluded that increases in somatostatin release in response to CGRP are probably due to a direct effect on the gastric somatostatin-producing D-cell and may be important for the potent acid-inhibitory activity of CGRP.  相似文献   

18.
We assessed the central and peripheral biological actions of human and rat calcitonin and calcitonin gene-related peptide (CGRP). After intravenous administration, human and rat calcitonin, but neither human nor rat CGRP significantly decreased plasma calcium and phosphorus concentrations in awake, freely moving rats. After intracerebroventricular as well as after intravenous administration, human and rat calcitonin and human and rat CGRP significantly inhibited gastric acid secretion in conscious rats. Intracerebroventricular administration of rat calcitonin did not alter plasma calcium and phosphorus concentrations. Linear, partially protected CGRP and calcitonin did not exhibit any biological effects. These studies indicate that calcitonin, but not CGRP, affects calcium and phosphorus homeostasis while both peptides decrease gastric acid secretion similarly. Furthermore, these studies support the hypothesis that the calcium and phosphorus lowering effects of calcitonin are peripheral while the gastric inhibiting actions of the calcitonin and CGRP are mediated by the central nervous system.  相似文献   

19.
20.
The present study was performed to explore the effect of calcitonin gene-related peptide 8-37 (CGRP8-37) on the electrical stimulation-evoked discharge frequency of wide dynamic range (WDR) neurons in the dorsal horn of the spinal cord in rats. The discharge frequencies of WDR neurons were evoked by transdermic electrical stimulation applied on the ipsilateral hindpaw. CGRP8-37 was applied directly on the dorsal surface of the L3 to L5 spinal cord. After the administration of 3 nmol of CGRP8-37, the evoked discharge frequency of WDR neurons decreased significantly, an effect lasting more than 30 min. The results indicate that CGRP receptors play an important role in the transmission of presumed nociceptive information in the dorsal horn of the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号