where W is the wear volume (depth), K the wear coefficient, P the contact pressure, S the slippage.And then the stress intensity factor for cracking due to fretting fatigue was calculated by using contact pressure and frictional stress distributions, which were analyzed by the finite element method. The SN curves of fretting fatigue were predicted by using the relationship between the calculated stress intensity factor range (ΔK) with the threshold stress intensity factor range (ΔKth) and the crack propagation rate (da/dN) obtained using CT specimens of the material. And then fretting fatigue tests were conducted on Ni–Cr–Mo–V steel specimens. The SN curves of our experimental results were in good agreement with the analytical results obtained by considering fretting wear process. Using these estimation methods we can explain many fretting troubles in industrial fields.  相似文献   

11.
Effect of contact load on fretting fatigue behaviour of steel wires     
《Tribology - Materials, Surfaces & Interfaces》2013,7(4):153-157
Abstract

The tension–tension fretting fatigue tests of steel wires were performed on a self-made fretting fatigue test equipment under contact loads ranging from 40 to 70 N and a strain ratio of 0·8. The results showed that when the contact load increased, the fretting regime of steel wires transformed from gross slip regime to mixed fretting regime. The fretting fatigue life in the mixed fretting regime was significantly lower than that in the gross slip regime. The main fretting wear mechanisms in the gross slip regime, where there were serious fretting damage and a lot of wear debris, were abrasive wear and fatigue wear. Microcracks were observed in the fretting scar of the mixed fretting regime, and the main fretting wear mechanisms were adhesive and fatigue wears. The fretting wear scar was the fatigue source region, and the fatigue fracture surface could be divided into three regions.  相似文献   

12.
Effect of dissimilar mating materials and contact force on fretting fatigue behavior of Ti–6Al–4V     
Hyukjae Lee  Shankar Mall   《Tribology International》2004,37(1):35-44
Fretting fatigue behavior of a titanium alloy, Ti–6Al–4V, in contact with two pad materials having quite differing values of hardness and elastic modulus (aluminum alloy 2024 and Inconel 718) using “cylinder-on-flat” configuration was investigated at different applied stress levels and contact forces. Applied contact forces for both pad materials were selected to provide two Hertzian peak pressures of 292 and 441 MPa. Finite element analyses of all tests were also conducted which showed that an increase in contact force resulted in a smaller relative slip amplitude and a larger width of stick zone. These two factors, along with the lower coefficient of friction during fretting, resulted in less fretting damage on the contact surface of specimen subjected to higher contact force relative to that at lower contact force regardless of the hardness difference of mating materials. Also, an increase in hardness resulted in greater fretting damage on the contact surface of specimens only at higher contact force. Further, the fretting fatigue life decreased with an increase of applied contact force at higher applied effective stress, while it increased at lower applied effective stress with both pad materials. These observations suggest that there is complex interaction among hardness difference between mating surfaces, relative slip amplitude, and stress state in the contact region during fretting fatigue of dissimilar materials.  相似文献   

13.
Unlubricated gross slip fretting wear of metallic plasma-sprayed coatings for Ti6Al4V surfaces     
C.H. Hager Jr.  J.H. Sanders  S. Sharma 《Wear》2008,265(3-4):439-451
Plasma-sprayed Al–bronze or CuNiIn coatings are often applied to protect against fretting wear and extend the operational life of Ti-alloy compressor blades in turbine engines. In order to develop a fundamental understanding of how these coating systems perform under gross slip fretting conditions, bench level fretting wear tests were conducted at room temperature to simulate cold engine startup. Alternative coatings such as plasma-sprayed molybdenum and nickel were also evaluated because of their potential for reducing fretting wear under certain simulated engine conditions. The combination of scanning electron microscopy (SEM), surface profilometry, surface chemistry (EDS), and friction analysis were used to study coating performance and evaluate the interfacial wear mechanisms. In this study, it was determined that all coatings caused significant damage to the mating Ti6Al4V surfaces and that the wear mechanisms were all similar to those of the uncoated baseline case.  相似文献   

14.
Fretting wear behavior of nanocrystalline surface layer of copper under dry condition     
Y.S. Zhang  Z. Han  K. Lu 《Wear》2008,265(3-4):396-401
Unlubricated fretting tests were performed with a nanocrystalline surface layer of a 99.99 wt.% copper fabricated by means of surface mechanical attrition treatment (SMAT), in comparison with a coarse-grained (CG) copper. The measured friction and wear data show that the fretting wear resistance is markedly enhanced with the nanocrystalline surface layer relative to the CG counterpart. The friction coefficient and wear volume of the SMAT Cu are lower than that of the CG Cu. For both samples, the friction coefficients and wear volumes increase with an increasing applied load and fretting frequency. A rapid increase of the friction coefficient and wear volume under an applied load above a critical value (30 N for the SMAT Cu and 20 N for the CG Cu) is noticed, corresponding to the formation of a continuous oxide layer between two contact surfaces. Also two sharp increases of the friction coefficient and wear volume at fretting frequencies of 50 Hz and 175 Hz were observed for the SMAT and the CG Cu. The former is correlated with the formation of a continuous oxide layer, while the latter corresponds to wearing away of the oxide layer.  相似文献   

15.
Fretting fatigue crack initiation and propagation behavior of Inconel 690 alloy     
Choon Yeol Lee  Han-Kyu Jeung  Jae-Do Kwon 《Journal of Mechanical Science and Technology》2016,30(11):4937-4940
Several studies have been conducted on the fretting fatigue limit characteristics of Inconel alloy tube material used in steam generators of nuclear power plants. Nevertheless, additional research on fretting fatigue crack initiation and propagation behavior is necessary in order to evaluate its fretting fatigue life more accurately. In this study, crack growth tests of fretting fatigue are conducted, and the characteristics of fatigue crack initiation and propagation are analyzed on Inconel 690 alloy. Also, plain fatigue crack growth tests are performed on the same material, and the results are compared with those of fretting fatigue crack growth tests. From both of the plain and fretting fatigue crack growth test results, the ΔK-da/dN diagrams are obtained and the crack growth rates are compared. It is found that the crack growth rate for fretting fatigue tests is faster than that for plain fatigue tests under a certain value of DK. However, over this value of DK, the crack growth rate for fretting fatigue tests becomes slower than that for plain fatigue tests due to debris which is produced by fretting and trapped in the propagated cracks. Finally, the fracture surfaces examined by an optical microscope, and the initiation angles of the oblique cracks are determined under various applied stresses. Also, the microstructure of the fracture surfaces is observed by a Scanning electron microscopy (SEM).  相似文献   

16.
The effects of laser peening and shot peening on fretting fatigue in Ti-6Al-4V coupons     
Kevin K. Liu 《Tribology International》2009,42(9):1250-1262
This paper describes testing of Ti-6Al-4V coupons in fretting fatigue and compares the effects of mechanical surface treatments on performance. Fretting fatigue tests were performed using a proving ring for fretting load, bridge-type fretting pads, and applied tension-tension cyclic fatigue stress. As-machined (AM), shot peened (SP), and laser peened (LP) coupons were evaluated, and data generated to compare residual stress, surface condition, lifetime, and fractographic detail encountered for each. Near-surface residual stress in SP and LP coupons was similar. The layer of compressive residual stress was far deeper in LP coupons than in SP coupons and, consequently, subsurface tensile residual stress was significantly greater in LP coupons than in SP coupons. SP coupons exhibited a rough surface and had the greatest volume of fretting-induced wear. LP coupons exhibited a wavy surface and had a small volume of wear localized at wave peaks. SP coupons had the greatest fretting fatigue lifetime, with significant improvement over AM coupons. Lifetimes of LP coupons were similar to those for SP coupons at high fatigue stress, but fell between AM and SP coupons at lower fatigue stress. Fractographic evaluation showed that fractures of AM samples were preceded by initiation of fretting-induced cracks, transition of a lead fretting crack to mode-I fatigue crack growth, and crack growth to failure. SP and LP samples exhibited behavior similar to AM samples at high fatigue stress, but in coupons tested at low stress the lead crack initiated subsurface, near the measured depth of maximum tensile residual stress, despite the presence of fretting-induced cracks. The level of fatigue stress above which lead cracks were initiated by fretting was higher for LP than for SP, and was predicted with good accuracy using an analysis based on linear elastic fracture mechanics, the fatigue crack growth threshold stress intensity factor range, and superposition of measured residual stress and applied fatigue stress.  相似文献   

17.
Development of a test device for the evaluation of fretting in point contact     
A. Pasanen  S. Jrvisalo  A. Lehtovaara  R. Rabb 《Lubrication Science》2009,21(2):41-52
Fretting wear and fatigue may occur between any two contacting surfaces, wherever short‐amplitude reciprocating sliding is present for a large number of cycles. A test device has been developed for the evaluation of fretting fatigue and wear in partial and gross slip conditions. Three similar sphere‐on‐plane contacts run at the same time. Normal force, tangential force or displacement amplitude and constant bulk stress can be controlled and measured separately. Reciprocating tangential displacement is produced with rotational motion, the amplitude and frequency of which can be adjusted and controlled accurately by an electric shaker. The number of load cycles for crack initiation and growth is determined with strain‐gauge measurements near the fretting point of contact. The contact surfaces are measured with 3D optical profilometer before fretting measurements to determine actual contact geometry. The measurements were done with quenched and tempered steel. The initial results indicate that cracks are mostly formed in partial slip conditions, whereas fretting wear is more heavily involved in gross slip conditions. The initiation of a crack occurs near the edge of the contact in the slip direction, where the calculated cracking risk has its maximum value in partial slip conditions. The number of cracks increases as the displacement amplitude, i.e. friction force, increases in partial slip conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
钢丝微动疲劳裂纹萌生寿命预测研究*     
徐伟  王大刚  张俊  冯存傲  张德坤 《润滑与密封》2022,47(11):1-9
钢丝微动疲劳过程中,钢丝裂纹萌生特性直接影响其裂纹扩展特性,进而制约钢丝微动疲劳寿命,因此开展钢丝微动疲劳裂纹萌生寿命预测研究具有重要意义。基于有限元法、摩擦学理论和断裂力学理论,运用Smith-Watson-Topper(SWT)多轴疲劳寿命准则建立考虑磨损的钢丝微动疲劳裂纹萌生寿命预测模型,基于多种不同的钢丝疲劳参数估算方法对钢丝的微动疲劳裂纹萌生寿命进行了预测,并探究接触载荷、疲劳载荷、交叉角度及钢丝直径等微动疲劳参数对钢丝微动疲劳裂纹萌生寿命的影响规律。结果表明:基于中值法的预测结果最接近实际值;在微动疲劳过程中,钢丝微动疲劳裂纹萌生寿命主要与接触载荷和疲劳载荷相关。通过引入微动损伤参数建立简化的适用于钢丝绳的钢丝微动疲劳裂纹萌生寿命预测模型,通过与考虑磨损的预测模型计算结果进行对比验证了该模型的准确性。  相似文献   

19.
High-temperature friction and wear behaviour of different tool steels during sliding against Al–Si-coated high-strength steel     
J. Hardell  B. Prakash   《Tribology International》2008,41(7):663-671
The recent years have witnessed an increasing usage of high-strength steels as structural reinforcements and in energy-absorbing systems in automobile applications due to their favourable high-strength-to-weight ratios. Owing to poor formability, complex-shaped high-strength steel components are invariably produced through hot-metal forming. The high-strength steel sheets are in some instances used with an Al–Si-coating with a view to prevent scaling of components during hot-metal forming. However, friction and wear characteristics of Al–Si-coated high-strength steel during interaction with different tool steels have not yet been investigated. With this in view, friction and wear behaviours of different tool steels sliding against Al–Si-coated high-strength steel at elevated temperatures have been investigated by using a high-temperature version of the Optimol SRV reciprocating friction and wear tester at temperatures of 40, 400 and 800 °C. In these studies both temperature ramp tests with continuously increasing temperature from 40 to 800 °C and constant temperature tests at 40, 400 and 800 °C, have been conducted. The results have shown that both the friction and wear of tool steel/Al–Si-coated high-strength steel pairs are temperature dependent. Friction decreased with increasing temperature whereas wear of the tool steel increased with temperature. On the other hand, the Al–Si-coated high-strength steel showed significantly lower wear rates at 800 °C as compared to those at 40 and 400 °C. The Al–Si-coated surface undergoes some interesting morphological changes when exposed to elevated temperatures and these changes may affect the friction and wear characteristics. The mechanisms of these changes and their influence on the tribological process are unclear and further studies are necessary to fully explain these mechanisms.  相似文献   

20.
Friction and wear properties of Ni–Cr–W–Al–Ti–MoS2 at elevated temperatures and self-consumption phenomena     
Jian Liang Li  Dang Sheng Xiong  Ming Feng Huo 《Wear》2008,265(3-4):566-575
The composites of Ni–Cr–W–Al–Ti–MoS2 with different adding amount of molybdenum disulfide (6–20 wt.%) were prepared by powder metallurgy (P/M) method. Their mechanical properties and tribological properties from room temperature to 600 °C were tested by a pin-on-disk tribometer. The effects of amounts of molybdenum disulfide, temperature, load, and speed on the friction and wear properties of composite were discussed. Besides, the tribological properties against different counterface materials, such as alumina, silicon nitride and nickel-iron-sulfide alloys were also investigated. Results indicated that the molybdenum disulfide was decomposed during the hot-press process and the eutectic sulfides of chromium were formed. The hardness and anti-bending strength can be improved by adding 6 wt.% molybdenum disulfide due to reinforcement of molybdenum. The friction coefficients and wear rates of composites decrease with the increase of adding amount of molybdenum disulfide until a critical value of 12 wt.%. The composite with 12% MoS2 shows the optimum friction and wear properties over the temperature range of RT 600 °C. The friction coefficients of composite with 12% MoS2 decrease with the increase of temperature, load, and sliding speed, while the wear rates increase with the increasing temperature and are insensitive to the sliding speed and load. The friction coefficients of less than 0.20 at 600 °C and mean wear rates of 10−5 mm3/N m are obtained when rubbing against alumina due to the lubrication of sulfide films and glaze layer formed on the friction surface at high temperature, while a relatively low wear rate of around 10−6 mm3/N m presents when rubbing against nickel-iron-sulfide alloys. At high temperature, wear rates of composite containing sulfide are inversely proportional to friction coefficients approximately.  相似文献   

  首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was conducted to quantify fretting fatigue damage and to evaluate the residual fatigue strength of specimens subjected to a range of fretting fatigue test conditions. Flat Ti–6Al–4V specimens were tested against flat Ti–6Al–4V fretting pads with blending radii at the edges of contact. Fretting fatigue damage for two combinations of static average clamping stress and applied axial stress was investigated for two percentages of total life. Accumulated damage was characterized using full field surface roughness evaluation and scanning electron microscopy (SEM). The effect of fretting fatigue on uniaxial fatigue strength was quantified by interrupting fretting fatigue tests, and conducting uniaxial residual fatigue strength tests at R=0.5 at 300 Hz. Results from the residual fatigue strength tests were correlated with characterization results.While surface roughness measurements, evaluated in terms of asperity height and asperity spacing, reflected changes in the specimen surfaces as a result of fretting fatigue cycling, those changes did not correspond to decreases in residual fatigue strength. Neither means of evaluating surface roughness was able to identify cracks observed during SEM characterization. Residual fatigue strength decreased only in the presence of fretting fatigue cracks with surface lengths of 150 μm or greater, regardless of contact condition or number of applied fretting fatigue cycles. No cracks were observed on specimens tested at the lower stress condition. Threshold stress intensity factors were calculated for cracks identified during SEM characterization. The resulting values were consistent with the threshold identified for naturally initiated cracks that were stress relieved to remove load history effects.  相似文献   

2.
V. Fridrici  S. Fouvry  Ph. Kapsa 《Wear》2001,250(1-12):642-649
In this paper, we report on the fretting wear behaviour of polished and shot peened Ti–6Al–4V specimens. For fretting experiments, due to micro-displacements at the interface between two contacting surfaces, two types of damage can be observed: crack initiation and debris formation. Shot peening, which is already well known for improving fatigue resistance of titanium alloys, is shown to have a beneficial effect on the crack initiation and propagation under fretting wear loading, as cracks observed on specimens after cylinder-on-flat fretting tests are shorter in shot peened specimens than in polished ones. It is also demonstrated that shot peening decreases the friction coefficient only at the beginning of the test, as long as the asperities induced by shot peening are not worn-off. The effects of displacement amplitude, normal force and test duration on the wear volume have been investigated: in all cases, shot peening has no significant impact on the wear process. The same amount of debris are formed and ejected for both polished and shot peened specimens. Moreover, it is found that, for both types of specimens, the linear relation, developed for steels and hard coatings, between wear volume and cumulated dissipated energy is not valid in the present case as different wear volumes are measured for the same cumulated dissipated energy, depending on the experimental conditions (normal force, displacement amplitude). Using the test duration as the variable parameter, energy wear coefficients are calculated for different experimental conditions.  相似文献   

3.
Fretting fatigue tests for Ti–6Al–4 V alloy were conducted by use of the plate fatigue specimen with bolt-tightened shoe on both sides of the plate. It was clarified that the repeated bending stress at the contact area where fretting fatigue failure starts linearly decreased as stress over the contact area increased. Fretting fatigue crack starts from the pit where stress concentrate. The pit initiates when fretting debris were removed from the surface striation formed due to the contact slip movement. The fretting fatigue crack initiation mode was transgranular, while the fretting fatigue crack propagation mode was striation.  相似文献   

4.
Fretting wear and fretting fatigue are two commonly observed material damages when two contacting bodies with a clamping load are under the oscillatory motion. In this study, fretting wear damage of Cu–Al coating on titanium alloy, Ti–6Al–4V substrate was investigated using the dissipated energy approach. Fretting tests were conducted with either no fatigue load or the maximum fatigue load of 300 MPa and stress ratio of 0.1 on the substrate (specimen). In order to investigate the effect of contact load and contact size, different pad sizes and contact loads were used in the tests. Accumulated dissipated energy versus wear volume data showed a linear relationship regardless of fatigue loading condition on specimen with the smaller pad size. However, two separate linear relationships were observed based on the fatigue loading condition with the larger pad size, such that a relatively more dissipated energy was required for a certain amount of wear with fatigue load on the specimen. The linear relationship between the accumulated dissipated energy and wear volume for both pad sizes extended from partial to gross slip regimes and was not affected by the applied contact load. Further, fretting tests with and without fatigue load resulted in different shapes of fretting loops when the larger pad size was used.  相似文献   

5.
针对Ti-6Al-4V钛合金燕尾榫连接结构在不同载荷下的微动疲劳现象,采用榫形微动疲劳试验进行研究,并对裂纹萌生扩展、微动磨损及断口进行分析。结果表明,微动疲劳使构件疲劳寿命显著降低约70%;疲劳载荷对微动裂纹扩展的影响比对裂纹萌生的影响更大;微动疲劳裂纹起始于接触面边缘,与接触表面约成45°角,裂纹扩展到60~150μm后转向与接触表面垂直;微动疲劳断口形貌表面在微动磨损区具有多个裂纹源点,但只有一个主裂纹形成。  相似文献   

6.
Al–Ti–B master alloys and diopside were incorporated into alumina matrix and advanced alumina matrix ceramic materials were fabricated by pressureless sintering technology. The mechanical properties of this new composite as well as its wear behaviours, coupled with carbon steel ring in unlubricated conditions at room temperature, were investigated systemically. SEM technology was adopted to observe the worn surfaces of specimens and wear mechanisms were simultaneously discussed. Analysis of the experimental data and observations on the worn surfaces revealed that the improvement in the wear resistance of the composites might be attributed mainly to the strong toughening effect due to the introduction of Al–Ti–B master alloys and diopside in the alumina matrix.  相似文献   

7.
G. Timmermans  L. Froyen 《Wear》1999,230(2):2370-117
The fretting wear behaviour of forged hypereutectic P/M Al–Si in contact with hardened steel and Cu–Sn–Pb bearing material is investigated. Fretting tests are performed with a view to the movement in the contact between the small end of the connecting rod and the piston pin in a car engine. Therefore, the tests are carried out under engine oil lubrication at temperatures up to 150°C. The behaviour of the Al alloy is compared to that of steel, the current connecting rod material. Some tests under non-lubricated conditions are also performed. The correlation between the friction coefficient, the wear volume and the microscopic wear mechanisms is discussed. After the running-in wear, a stable wear condition is reached for the Al–Si/steel contact.  相似文献   

8.
An investigation was conducted to explore the nature of fretting fatigue damage in the stages prior to crack formation. In the unique experimental apparatus employed in this study, where total slip never occurs, several locations on each test specimen exist where cracks can develop due to local contact conditions. Under the test conditions used, not all of the sites had cracks upon test completion. This study evaluated the condition of non-cracked sites on several fretted specimens in an effort to identify differences between these and sites where small cracks were observed.A single test condition of 620 MPa average applied static clamping stress and 250 MPa applied axial fatigue stress for R=0.5 was selected, which corresponds to a fretting fatigue life of 107 cycles based on prior work. For specimens tested to 106 cycles, or 10% of life, several destructive and non-destructive characterization methods were chosen: scanning electron microscopy (SEM), residual stress measurement and transmission electron microscopy (TEM). Each site at which crack nucleation could be expected was inspected in the SEM and was then characterized using surface X-ray diffraction to quantify the residual stresses field near that location. Then TEM foils were cut from one area on a specimen with tiny cracks and dislocation densities were observed. A novel technique was used which permitted TEM samples to be obtained from regions in close proximity on the original specimen.Comparisons were made between as-received (AR) and stress-relief annealed (SRA) specimens, on which the stress-relief was applied prior to fretting fatigue testing. SEM inspection was useful for qualitative analysis of wear debris and identification of cracks as small as 20 μm, but was unable to provide quantitative data on the level of fretting fatigue damage beyond crack size. Although differences were noted in the residual stresses for the SRA versus the AR specimens, no residual stress peaks were noted in the edge of contact regions where cracks would eventually develop. TEM observations in the vicinity of the crack nucleation region showed that the dislocation structure decayed rapidly into the specimen thickness. The cause of the dislocations was attributed to plastic deformation caused by the clamping stresses.  相似文献   

9.
TC4合金微动疲劳损伤研究   总被引:1,自引:1,他引:1  
研究了TC4合金在柱面-平面接触务件下的微动疲劳行为,分析了其微动疲劳损伤机制。结果表明:在试验务件下,微动区边缘的损伤特征以粘着磨损为主,而微动区中部则以磨粒磨损和接触疲劳为主。疲劳裂纹易于在微动区.特别是在蚀坑处萌生和扩展。促使微动疲劳裂纹萌生的因素:一是法向应力和切向摩擦力引起的材料表层塑性变形,二是微动磨损破坏了材料的表面完整性,造成了缺口应力集中效应。  相似文献   

10.
Fretting fatigue strength estimation considering the fretting wear process   总被引:1,自引:0,他引:1  
In fretting fatigue process the wear of contact surfaces near contact edges occur in accordance with the reciprocal micro-slippages on these contact surfaces. These fretting wear change the contact pressure near the contact edges. To estimate the fretting fatigue strength and life it is indispensable to analyze the accurate contact pressure distributions near the contact edges in each fretting fatigue process.So, in this paper we present the estimation methods of fretting wear process and fretting fatigue life using this wear process. Firstly the fretting-wear process was estimated using contact pressure and relative slippage as follows:
W=K×P×S,
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号