首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
2.
General formalism to describe both equilibrium and nonequilibrium states of polymer networks containing a solvent or interacting with the solvent medium is proposed. Two classes of problems have been formulated. It is necessary to determine the stress-strain state of an inhomogeneously swollen material in one case and that of a statically loaded material occurring in thermodynamic equilibrium with the solvent in the other case. The state of the swollen material is characterized in terms of the global mechanical stress tensor and the solvent chemical potential. In the case of incompressible material and liquid, an osmotic stress tensor is introduced. A method for deriving physical expressions for the mechanical stress tensor, the chemical potential, and the osmotic stress tensor is proposed on the basis of the known free energy relations that follow from different theories of rubber elasticity. The efficacy of the general formalism is demonstrated using particular examples in which the deformation behavior and the equilibrium swelling of mechanically loaded polymer networks are considered.  相似文献   

3.
The evaluation of the free energy is essential in molecular simulation because it is intimately related with the existence of multiphase equilibrium. Recently, it was demonstrated that it is possible to evaluate the Helmholtz free energy using a single statistical ensemble along an entire isotherm by accounting for the “chemical work” of transforming each molecule, from an interacting one, to an ideal gas. In this work, we show that it is possible to perform such a free energy perturbation over a liquid vapor phase transition. Furthermore, we investigate the link between a general free energy perturbation scheme and the novel nonequilibrium theories of Crook's and Jarzinsky. We find that for finite systems away from the thermodynamic limit the second law of thermodynamics will always be an inequality for isothermal free energy perturbations, resulting always to a dissipated work that may tend to zero only in the thermodynamic limit. The work, the heat, and the entropy produced during a thermodynamic free energy perturbation can be viewed in the context of the Crooks and Jarzinsky formalism, revealing that for a given value of the ensemble average of the “irreversible” work, the minimum entropy production corresponded to a Gaussian distribution for the histogram of the work. We propose the evaluation of the free energy difference in any free energy perturbation based scheme on the average irreversible “chemical work” minus the dissipated work that can be calculated from the variance of the distribution of the logarithm of the work histogram, within the Gaussian approximation. As a consequence, using the Gaussian ansatz for the distribution of the “chemical work,” accurate estimates for the chemical potential and the free energy of the system can be performed using much shorter simulations and avoiding the necessity of sampling the computational costly tails of the “chemical work.” For a more general free energy perturbation scheme that the Gaussian ansatz may not be valid, the free energy calculation can be expressed in terms of the moment generating function of the “chemical work” distribution. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
A recently proposed dynamical method [A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. 99, 12562 (2002)] allows us to globally sample the free energy surface. This approach uses a coarse-grained non-Markovian dynamics to bias microscopic atomic trajectories. After a sufficiently long simulation time, the global free energy surface can be reconstructed from the non-Markovian dynamics. Here we apply this scheme to study the T=0 free energy surface, i.e., the potential energy surface in coarse-grained space. We show that the accuracy of the reconstructed potential energy surface can be dramatically improved by a simple postprocessing procedure with only minor computational overhead. We illustrate this approach by conducting conformational analysis on a small organic molecule, demonstrating its superiority over traditional unbiased approaches in sampling potential energy surfaces in coarse-grained space.  相似文献   

5.
The Jarzynski equality and the fluctuation theorem relate equilibrium free energy differences to nonequilibrium measurements of the work. These relations extend to single-molecule experiments that have probed the finite-time thermodynamics of proteins and nucleic acids. The effects of experimental error and instrument noise have not been considered previously. Here, we present a Bayesian formalism for estimating free energy changes from nonequilibrium work measurements that compensates for instrument noise and combines data from multiple driving protocols. We reanalyze a recent set of experiments in which a single RNA hairpin is unfolded and refolded using optical tweezers at three different rates. Interestingly, the fastest and farthest-from-equilibrium measurements contain the least instrumental noise and, therefore, provide a more accurate estimate of the free energies than a few slow, more noisy, near-equilibrium measurements. The methods we propose here will extend the scope of single-molecule experiments; they can be used in the analysis of data from measurements with atomic force microscopy, optical, and magnetic tweezers.  相似文献   

6.
We describe a strategy to improve the efficiency of free energy estimates by reducing dissipation in nonequilibrium Monte Carlo simulations. This strategy generalizes the targeted free energy perturbation approach [C. Jarzynski, Phys. Rev. E 65, 046122 (2002)] to nonequilibrium switching simulations, and involves generating artificial, "escorted" trajectories by coupling the evolution of the system to updates in external work parameter. Our central results are: (1) a generalized fluctuation theorem for the escorted trajectories, and (2) estimators for the free energy difference ΔF in terms of these trajectories. We illustrate the method and its effectiveness on model systems.  相似文献   

7.
We present the results of computer simulations giving a kinetic insight into the liquid-to-solid transition of a homopolymer chain with short-range interactions. By calculating the absolute rates in each direction of the transition, using molecular dynamics employing the forward flux sampling scheme, we provide the phase diagram based on purely kinetic data, and compare it with the results from Monte Carlo simulations. Additionally, we present and discuss a remarkably simple and general relation between the polymer topology and the folding pathway, and show that the eigenvalue spectrum of a matrix defined by non-bonded contacts (the Laplacian matrix) provides an insight into the nonequilibrium ensembles of these trajectories. In particular, the Laplacian matrix seems to identify a large fraction of configurations on the folding pathway at the free energy maximum that have a very low probability of reaching the crystallized state. This implies that the eigenvalues of this matrix may be suitable additional reaction coordinates to describe the folding transition of chain molecules.  相似文献   

8.
9.
Theoretical investigations of a series of asymmetrically substituted conducting molecular wires [oligo(phenylene ethynylene)s] have been carried out using density functional theory and nonequilibrium Green's function formalism. To get the molecular rectification, the electron-donating group (-NH2) and the electron-withdrawing group (-NO2) are placed on the different positions of the molecular wire. The dependences of spatial distribution and lowest unoccupied molecular orbital (LUMO) energy level on the applied voltage have been found playing dominating but opposite roles in controlling the rectification behavior. In the tested bias range, since the shift LUMO energy level is more important, the electrons transfer more easily from donor to acceptor through the molecular junction in general.  相似文献   

10.
We suggest and discuss a simple model of an ideal gas under the piston to gain an insight into the workings of the Jarzynski identity connecting the average exponential of the work over the nonequilibrium trajectories with the equilibrium free energy. We show that the identity is valid for our system, due to the very rapid molecules belonging to the tail of the Maxwell distribution. For the most interesting extreme, when the system volume is large, while the piston is moving with great speed (compared to thermal velocity) for a very short time, the necessary number of independent experimental runs to obtain a reasonable approximation for the free energy from averaging the nonequilibrium work grows exponentially with the system size.  相似文献   

11.
We have investigated the maximum computational efficiency of reversible work calculations that change control parameters in a finite amount of time. Because relevant nonequilibrium averages are slow to converge, a bias on the sampling of trajectories can be beneficial. Such a bias, however, can also be employed in conventional methods for computing reversible work, such as thermodynamic integration or umbrella sampling. We present numerical results for a simple one-dimensional model and for a Widom insertion in a soft sphere liquid, indicating that, with an appropriately chosen bias, conventional methods are in fact more efficient. We describe an analogy between nonequilibrium dynamics and mappings between equilibrium ensembles, which suggests that the practical inferiority of fast switching is quite general. Finally, we discuss the relevance of adiabatic invariants in slowly driven Hamiltonian systems for the application of Jarzynski's theorem.  相似文献   

12.
A new molecular dynamics method for calculating free energies associated with transformations of the thermodynamic state or chemical composition of a system (also known as alchemical transformations) is presented. The new method extends the adiabatic dynamics approach recently introduced by Rosso et al. [J. Chem. Phys. 116, 4389 (2002)] and is based on the use of an additional degree of freedom, lambda, that is used as a switching parameter between the potential energy functions that characterize the two states. In the new method, the coupling parameter lambda is introduced as a fictitious dynamical variable in the Hamiltonian, and a system of switching functions is employed that leads to a barrier in the lambda free energy profile between the relevant thermodynamic end points. The presence of such a barrier, therefore, enhances sampling in the end point (lambda = 0 and lambda = 1) regions which are most important for computing relevant free energy differences. In order to ensure efficient barrier crossing, a high temperature T(lambda) is assigned to lambda and a fictitious mass m(lambda) is introduced as a means of creating an adiabatic separation between lambda and the rest of the system. Under these conditions, it is shown that the lambda free energy profile can be directly computed from the adiabatic probability distribution function of lambda without any postprocessing or unbiasing of the output data. The new method is illustrated on two model problems and in the calculation of the solvation free energy of amino acid side-chain analogs in TIP3P water. Comparisons to previous work using thermodynamic integration and free energy perturbation show that the new lambda adiabatic free energy dynamics method results in very precise free energy calculations using significantly shorter trajectories.  相似文献   

13.
Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.  相似文献   

14.
15.
Jarzynski's relation and the fluctuation theorem have established important connections between nonequilibrium statistical mechanics and equilibrium thermodynamics. In particular, an exact relationship between the equilibrium free energy and the nonequilibrium work is useful for computer simulations. In this paper, we exploit the fact that the free energy is a state function, independent of the pathway taken to change the equilibrium ensemble. We show that a generalized expression is advantageous for computer simulations of free energy differences. Several methods based on this idea are proposed. The accuracy and efficiency of the proposed methods are evaluated with a model problem.  相似文献   

16.
The quantum dynamics of the hydride transfer reaction catalyzed by liver alcohol dehydrogenase (LADH) are studied with real-time dynamical simulations including the motion of the entire solvated enzyme. The electronic quantum effects are incorporated with an empirical valence bond potential, and the nuclear quantum effects of the transferring hydrogen are incorporated with a mixed quantum/classical molecular dynamics method in which the transferring hydrogen nucleus is represented by a three-dimensional vibrational wave function. The equilibrium transition state theory rate constants are determined from the adiabatic quantum free energy profiles, which include the free energy of the zero point motion for the transferring nucleus. The nonequilibrium dynamical effects are determined by calculating the transmission coefficients with a reactive flux scheme based on real-time molecular dynamics with quantum transitions (MDQT) surface hopping trajectories. The values of nearly unity for these transmission coefficients imply that nonequilibrium dynamical effects such as barrier recrossings are not dominant for this reaction. The calculated deuterium and tritium kinetic isotope effects for the overall rate agree with experimental results. These simulations elucidate the fundamental nature of the nuclear quantum effects and provide evidence of hydrogen tunneling in the direction along the donor-acceptor axis. An analysis of the geometrical parameters during the equilibrium and nonequilibrium simulations provides insight into the relation between specific enzyme motions and enzyme activity. The donor-acceptor distance, the catalytic zinc-substrate oxygen distance, and the coenzyme (NAD(+)/NADH) ring angles are found to strongly impact the activation free energy barrier, while the donor-acceptor distance and one of the coenzyme ring angles are found to be correlated to the degree of barrier recrossing. The distance between VAL-203 and the reactive center is found to significantly impact the activation free energy but not the degree of barrier recrossing. This result indicates that the experimentally observed effect of mutating VAL-203 on the enzyme activity is due to the alteration of the equilibrium free energy difference between the transition state and the reactant rather than nonequilibrium dynamical factors. The promoting motion of VAL-203 is characterized in terms of steric interactions involving THR-178 and the coenzyme.  相似文献   

17.
Exact quantum mechanical state-to-state differential and integral cross sections and their energy dependence have been calculated on an accurate NH2 potential energy surface (PES), using a newly proposed Chebyshev wave packet method. The NH product is found to have a monotonically decaying vibrational distribution and an inverted rotational distribution. The product angular distributions peak in both forward and backward directions, but with a backward bias. This backward bias is more pronounced than that observed previously on a less accurate PES. Both the differential and integral cross sections oscillate mildly with collision energy, indicating the dominance of short-lived resonances. The quantum mechanical results are compared with those obtained from quasi-classical trajectories. The agreement is generally reasonable and the discrepancies can be attributed to the neglect of quantum effects such as tunneling. Detailed analysis of the trajectories revealed that the backward bias in the differential cross section stems overwhelmingly from the fast insertion component of the reaction, augmented with some flux from the abstraction channel, particularly at high collision energies.  相似文献   

18.
Recent work has demonstrated the Bennett acceptance ratio method is the best asymptotically unbiased method for determining the equilibrium free energy between two end states given work distributions collected from either equilibrium and nonequilibrium data. However, it is still not clear what the practical advantage of this acceptance ratio method is over other common methods in atomistic simulations. In this study, we first review theoretical estimates of the bias and variance of exponential averaging (EXP), thermodynamic integration (TI), and the Bennett acceptance ratio (BAR). In the process, we present a new simple scheme for computing the variance and bias of many estimators, and demonstrate the connections between BAR and the weighted histogram analysis method. Next, a series of analytically solvable toy problems is examined to shed more light on the relative performance in terms of the bias and efficiency of these three methods. Interestingly, it is impossible to conclusively identify a "best" method for calculating the free energy, as each of the three methods performs more efficiently than the others in at least one situation examined in these toy problems. Finally, sample problems of the insertion/deletion of both a Lennard-Jones particle and a much larger molecule in TIP3P water are examined by these three methods. In all tests of atomistic systems, free energies obtained with BAR have significantly lower bias and smaller variance than when using EXP or TI, especially when the overlap in phase space between end states is small. For example, BAR can extract as much information from multiple fast, far-from-equilibrium simulations as from fewer simulations near equilibrium, which EXP cannot. Although TI and sometimes even EXP can be somewhat more efficient in idealized toy problems, in the realistic atomistic situations tested in this paper, BAR is significantly more efficient than all other methods.  相似文献   

19.
Recently, accelerated molecular dynamics (AMD) technique was generalized to realize essential energy space random walks so that further sampling enhancement and effective localized enhanced sampling could be achieved. This method is especially meaningful when essential coordinates of the target events are not priori known; moreover, the energy space metadynamics method was also introduced so that biasing free energy functions can be robustly generated. Despite the promising features of this method, due to the nonequilibrium nature of the metadynamics recursion, it is challenging to rigorously use the data obtained at the recursion stage to perform equilibrium analysis, such as free energy surface mapping; therefore, a large amount of data ought to be wasted. To resolve such problem so as to further improve simulation convergence, as promised in our original paper, we are reporting an alternate approach: the adaptive-length self-healing (ALSH) strategy for AMD simulations; this development is based on a recent self-healing umbrella sampling method. Here, the unit simulation length for each self-healing recursion is increasingly updated based on the Wang-Landau flattening judgment. When the unit simulation length for each update is long enough, all the following unit simulations naturally run into the equilibrium regime. Thereafter, these unit simulations can serve for the dual purposes of recursion and equilibrium analysis. As demonstrated in our model studies, by applying ALSH, both fast recursion and short nonequilibrium data waste can be compromised. As a result, combining all the data obtained from all the unit simulations that are in the equilibrium regime via the weighted histogram analysis method, efficient convergence can be robustly ensured, especially for the purpose of free energy surface mapping.  相似文献   

20.
Transition path sampling is an innovative method for focusing a molecular dynamics simulation on a reactive event. Although transition path sampling methods can generate an ensemble of reactive trajectories, an initial reactive trajectory must be generated by some other means. In this paper, the authors have evaluated three methods for generating initial reactive trajectories for transition path sampling with ab initio molecular dynamics. The authors have tested each of these methods on a set of chemical reactions involving the breaking and making of covalent bonds: the 1,2-hydrogen elimination in the borane-ammonia adduct, a tautomerization, and the Claisen rearrangement. The first method is to initiate trajectories from the potential energy transition state, which was effective for all reactions in the test set. Assigning atomic velocities found using normal mode analysis greatly improved the success of this method. The second method uses a high temperature molecular dynamics simulation and then iteratively reduces the total energy of the simulation until a low temperature reactive trajectory is found. This was effective in generating a low temperature trajectory from an initial trajectory run at 3000 K of the tautomerization reaction, although it failed for the other two. The third uses an orbital based bias potential to find a reactive trajectory and uses this trajectory to initiate an unbiased trajectory. The authors found that a highest occupied molecular orbital-lowest unoccupied molecular orbital bias could be used to find a reactive trajectory for the Claisen rearrangement, although it failed for the other two reactions. These techniques will help make it practical to use transition path sampling to study chemical reaction mechanisms that involve bond breaking and forming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号