首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functionality of silver nanostructures prepared by means of electrochemical deposition of silver into the pores of anodic alumina oxide (AAO) template was examined in correlation to electrodeposition conditions. The optical activity as well as the chemical separation ability of prepared nanostructured films was studied. The surface enhanced Raman spectroscopy (SERS) performance was evaluated by the signals of rhodamine 6G, 4‐aminothiophenol and 2,7‐dichlorfluorescein. Nanostructured silver substrates showed moderate surface enhancement for Raman scattering from adsorbed molecules with the magnitude of about 26.9. Moreover, a novel separation/pre‐concentration function of the silver nanowire structures was indicated. The identification and position detection of the model compounds were realised with SERS. The separation of single chemical components from the two‐component mixture over the examined silver nanostructured films was sufficiently approved. The results obtained demonstrated the potential of the prepared substrate as a SERS detection and separation probe for further implementation to any instrumentation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper describes a very simple electroless-plating method used to prepare optically tunable nanostructured Ag films. Very stable Ag films can be reproducibly fabricated simply by soaking glass substrates in ethanolic solutions of AgNO3 and butylamine. The grain size of silver can be readily controlled to range from 20 to 150 nm, and these nanostructural features correlated well with their UV/vis absorption characteristics, as well as with their surface-enhanced Raman scattering (SERS) activities. It is also very advantageous that the Ag films prepared exhibit very even SERS activity over an area up to hundreds thousand square-micrometers, and the enhancement factor estimated using benzenethiol as a prototype adsorbate reaches approximately 2 x 10(5). Since the proposed method is cost-effective and is suitable for the mass production of diverse Ag films irrespective of the shapes of the underlying substrates, it is expected to play a significant role in the development of surface plasmon-based analytical devices.  相似文献   

3.
Antibody-antigen binding events at a monolayer protein concentration have been demonstrated on nanostructured adaptive silver films (ASFs) using surface-enhanced Raman scattering (SERS) and luminescence-based assays. It is shown that proteins stabilize and restructure the ASF to increase the SERS signal while preserving antigen-binding activity. Evidence for antibody-antigen binding on the ASF substrates is the distinct SERS spectral changes of the surface-bound antibody or antigen without special tags. The activity of the surface-bound proteins and their practical application are validated by independent immunochemical assays. Results are presented to demonstrate that these surfaces can be extended to protein arrays with detection applications distinct from current SERS, fluorescence, or luminescence methods.  相似文献   

4.
Quantitative electrochemical SERS of flavin at a structured silver surface   总被引:1,自引:0,他引:1  
In situ electrochemical surface enhanced Raman spectra (SERS) for an immobilized monolayer of a flavin analogue (isoalloxazine) at nanostructured silver surfaces are reported. Unique in the present study, the flavin is not directly adsorbed at the Ag surface but is attached through a chemical reaction between cysteamine adsorbed on the Ag surface and methylformylisoalloxazine. Even though the flavin is held away from direct contact with the metal, strong surface enhancements are observed. The nanostructured silver surfaces are produced by electrodeposition through colloidal templates to produce thin (<1 microm) films containing close-packed hexagonal arrays of uniform 900 nm sphere segment voids. The sphere segment void (SSV) structured silver surfaces are shown to be ideally suited to in situ electrochemical SERS studies at 633 nm, giving stable, reproducible surface enhancements at a range of electrode potentials, and we show that the SER spectra are sensitive to subfemtomole quantities of immobilized flavin. Studies of the SER spectra as a function of the electrode potential show clear evidence for the formation of the flavin semiquinone at the electrode surface at cathodic potentials.  相似文献   

5.
水汽界面二维银颗粒表面上的单分子拉曼光谱检测   总被引:5,自引:0,他引:5  
随着各种超灵敏分析仪器的发展 ,已经可以在低温固体中、室温液体中和电介质表面检测、鉴定单分子及其动力学行为 .这种新进展为科学家在分析化学、分子生物学和纳米结构材料等各种学科的应用开辟了许多新的视窗 .单分子谱学的研究在基础科学和应用科学方面引起了人们广泛的兴趣 .人们不仅希望能够“看到”单分子 ,而且希望了解单分子的物理化学行为 .在各种超灵敏检测技术中 ,拉曼光谱成为一种重要的技术 .由于原子力显微等微区技术的发展 ,并结合高灵敏度检测技术的进步 ,拉曼光谱已经发展成为一种检测灵敏度可以达到分子级的检测技术 [1,…  相似文献   

6.
The spectroscopic properties and surface-enhanced spectra of Langmuir-Blodgett (LB) films of methacrylic homopolymer (HPDR13) are presented. It is shown that LB film displays strong fluorescence attributed to the spatial restrictions imposed by its structure. The emission is observed in conjunction with photoisomerization, a process clearly demonstrated by the formation of surface-relief gratings in the LB film [C.R. Mendon?a et al., Macromolecules 32 (1999) 1493]. Surface-enhanced Raman scattering (SERS), Surface-enhanced resonance Raman scattering (SERRS) and surface-enhanced fluorescence (SEF) were observed for LB films of HPDR13 deposited onto silver island films. SERS measurements were also carried out on a sample fabricated with one monolayer LB film deposited onto silver islands followed by one overlayer of silver (LB sandwiched between two layers of silver islands). The polymer interacts very weakly with the metal surface (physisorption), and the enhancement effect is determined by the local electric field enhancement. The strong SERS and SERRS signals were suitable for micro-Raman imaging. Line, area mapping and global images of the LB monolayer on silver island are reported. The transfer ratio in the fabrication of the LB suggests a homogeneous coating of the silver islands, thereby the chemical images show the variation of the SERS intensity due to surface enhancement.  相似文献   

7.
Surface-enhanced Raman spectroscopy (SERS) substrates have been prepared by depositing Au or Ag on porous GaN (PGaN). The PGaN used as the template for the metal deposition in these studies was generated by a Pt-assisted electroless etching technique. PGaN was chosen as a potential SERS template due to its nanostructured surface and high surface area, two characteristics that are important for SERS substrates. Metal films were deposited either by solution-based electroless deposition or by thermal vacuum evaporation. SERS spectra were recorded at lambda = 752.5 nm for Au films and at lambda = 514.5 nm for Ag films deposited on PGaN. The SERS signal strength across the metal coated PGaN substrates was uniform and was not plagued by "hot" or "cold" spots on the surface, a common problem with other SERS surfaces. The Ag film deposited by electroless deposition had the highest overall SERS response, with an enhancement factor (EF) relative to normal Raman spectroscopy of 10(8). A portion of the increase in EF relative to typical SERS-active substrates can be assigned to the large surface area characteristic of the PGaN-Ag structures, but some of the enhancement is intrinsic and is likely related to the specific morphology of the metal-nanopore composite structure.  相似文献   

8.
Surface-enhanced Raman scattering from ordered Ag nanocluster arrays   总被引:2,自引:0,他引:2  
We have examined the effect of ordered silver nanocluster substrates on the surface-enhanced Raman spectrum of rhodamine 6G (R6G). Triangular shaped silver nanocluster arrays with order on the approximately 100 mum range were prepared using nanosphere lithography. Direct comparisons of R6G surface-enhanced Raman spectroscopy (SERS) signals between ordered nanocluster regions and amorphous Ag regions prepared under identical deposition conditions provide strong evidence of an electromagnetic field enhancement attributed to the unique nanocluster morphology. We have obtained order of magnitude enhancement factors for both 200 and 90 nm Ag nanocluster SERS substrates relative to Ag films.  相似文献   

9.
This article reports the designed preparation of two different kinds of novel porous metal nanostructured films, namely, an ordered macroporous Au/Ag nanostructured film and an ordered hollow Au/Ag nanostructured film. Different from previous reports, the presently proposed method can be conveniently used to control film structures by simply varying the experimental conditions. The morphology of these films has been characterized by scanning electron microscopy (SEM), and their performance as surface-enhanced Raman scattering (SERS) substrates has been evaluated by using rhodamine 6G (R6G) as a probe molecule. We show that such porous nanostructured films consisting of larger interconnected aggregates are highly desirable as SERS substrates in terms of high Raman intensity enhancement, excellent stability, and reproducibility. The interconnected nanostructured aggregate, long-range ordering porosity, and nanoscale roughness are important factors responsible for this large SERS enhancement ability.  相似文献   

10.
Surface-enhanced Raman scattering (SERS) has great potential as an analytical technique based on the unique molecular signatures presented even by structurally similar analyte species and the minimal interference of scattering from water when sampling in aqueous environments. Unfortunately, analytical SERS applications have been restricted on the basis of limitations in substrate design. Herein, we present a simple SERS substrate that exploits electroless deposition onto a nanoparticle-seeded polymer scaffold that can be fabricated quickly and without specialized equipment. The polymer-templated nanostructures have stable enhancement factors that are comparable to the traditional silver film over nanospheres (AgFON) substrate, broad localized surface plasmon resonance spectra that allow various Raman excitation wavelengths to be utilized, and tolerance for both aqueous and organic environments, even after 5 day exposure. These polymer-templated nanostructures have an advantage over the AgFON substrate based on the ease of fabrication; specifically, the ability to generate fresh SERS substrates outside the laboratory environment will facilitate the application of SERS to new analytical spectroscopy applications.  相似文献   

11.
利用化学沉积法和溶胶法制备了粒径在20~100nm范围内不同的表面增强纳米结构活性银膜,系统地研究了单壁碳纳米管(SWCNT)的表面增强拉曼光谱(SERS)的G—band和D—band、比较玻璃和石英两种不同基片上的结果发现,单壁碳管的SERS谱随银膜粒径的变化有相同的变化趋势,G-band峰移对20~100nm范围内活性银膜粒径的差异不敏感,表明该波段所对应的碳管六元环本征振动比较稳定,与界面的化学相互作用较弱.D—band的峰形随基片和活性银膜粒径不同均有改变,且随着粒径变小,高频振动贡献有增大的趋势,表明无序碳与活性银膜间存在很强的相互作用。  相似文献   

12.
Surface Enhanced Raman Spectroscopy on Carbon Filaments   总被引:1,自引:0,他引:1  
 A method for analysis of carbon-containing thin films by using surface enhanced Raman spectroscopy (SERS) is described. Thin films of boron nitride or silicon carbide which are deposited on carbon filaments were coated additionally with silver nanoparticles. A very thin plasma polymer film was deposited on the silver particles to give a better long time stability. Using these layers, very intensive carbon band were detected.  相似文献   

13.
Adsorption properties of acetylsalicylic acid (AA), ibuprofen and acetaminophen deposited from volatile solvents with varying protic/aprotic properties on vacuum-evaporated silver films were characterized using surface-enhanced infrared absorption (SEIRA) and surface-enhanced Raman spectroscopy (SERS). SERS preferentially enhances monolayer Raman shifts, while SEIRA can enhance the infrared absorbance of the monolayer and multilayers. To our best knowledge, this is the first reported study of these molecules using a combination of SERS/SEIRA. SERS revealed that AA and ibuprofen adsorbed ionically in monolayers, independent of the deposition solvents used in the process. SEIRA experiments showed that AA multilayers condensed molecularly using a deposition solvent with polar bonds. However, when an alkane deposition solvent with non-polar bonds such as n-heptane was used, AA adsorbed as acetylsalicylate ions in the first few multilayers, while ibuprofen always adsorbed as the free acid in the multilayer. These ionization trends depend upon the affinity of AA and ibuprofen for the underlying silver film. TPD experiments on silver powders further demonstrated that ibuprofen affinity for silver was less than AA. Furthermore, SEIRA indicated that acetaminophen adsorbed as multilayers of metastable polymorphs using protic or polar aprotic deposition solvents. Protic deposition solvents gave higher quality SERS spectra of an acetaminophen monolayer in comparison to polar aprotic deposition solvents. Such studies could find significant applications in biochemical and nanotechnology processes such as drug delivery, catalysis, and tissue engineering and will contribute to the understanding of the impact and fate of analgesics released into the environment.  相似文献   

14.
Surface-enhanced vibrational spectroscopy (SEVS) is discussed using 5-methyluracil (thymine) as a model compound. Surface-enhanced Raman scattering (SERS) and surface-enhanced infrared (SEIR) are reported and a characterization of thymine adsorbed onto silver island films is provided. The thymine SERS spectra obtained using silver colloids, silver roughened electrodes and silver island films are remarkably different due to several binding possibilities of thymine during chemical adsorption onto a silver surface. It is shown that laser induced photo dissociation may lead to further changes in the recorded spectra of the adsorbate. The surface enhanced-infrared (SEIR) spectra of thymine on silver island are reported here for the first time. The infrared spectra of thymine films were also been obtained to help the assignment of molecular vibrations in the surface enhanced spectra.  相似文献   

15.
Costa JC  Sant'ana AC  Corio P  Temperini ML 《Talanta》2006,70(5):1011-1016
The use of surface-enhanced Raman spectroscopy (SERS) for trace determination of polycyclic aromatic hydrocarbons (PAHs) is described. This paper focuses on the development of SERS-active substrates that are specific for the characterization and spectroscopic study of PAHs. The SERS-active substrates are based on thin gold films evaporated on a glass surface previously treated with a mercaptoalkylsilane. SERS of PAHs was investigated over uncoated gold island films and over such films coated with a self-assembled monolayer (SAM) of 1-propanethiol. Adsorption of PAHs on a plain SERS-active Au-film led to a surface-induced decomposition of PAHs, due to catalytic properties of nanostructured gold. Thus, the functionalization of the SERS-active substrates by means of SAM was done aiming at a specific chemical interaction toward PAHs. Thus, in addition to preventing decomposition of the PAHs, the coating also concentrates the hydrophobic PAHs close enough to the SERS-active interface. Results show that high sensitivity, SERS-active nanostructured gold substrates that show selectivity towards PAHs were obtained, with the following properties: strong intensification of the Raman signal, reproducibility, and stability over time. The employed methodology enables the observation of excellent Raman spectra of PAHs in aqueous environment at ppm levels.  相似文献   

16.
The surface topography of Ag films and surface enhanced Raman scattering (SERS) from benzene on Ag films have been simultaneously recorded. The Ag films were formed by vacuum deposition at temperatures ranging from 100 K to 500 K. Analysis of scanning tunnelling microscopy (STM) images shows that films formed below 250 K are fractal structures with Hausdorff-Besicovitch dimension 2.55 < D < 2.72, while for those formed above 250 K, D≈2. The lower temperature, rough films exhibit strong surface enhanced Raman scattering but the higher temperature, smooth films do not. We consider the consequences of fractal character and the possible correlation between this and the SERS activity of these films.  相似文献   

17.
Surface-enhanced Raman scattering(SERS) spectra of different silver nanoplate self-assembled films at different excitation wavelengths were fairly compared. Shape conversion from silver nanoprisms to nanodisks on slides was in situ carried out. The SERS spectra of 4-mercaptopyridine(4-MPY) on these anisotropic silver nanoparticle self-assembled films present that strong enhancement appeared when the excitation line and the surface plasmon resonance(SPR) band of silver substrate overlapped. In this model, the influence of the crystal planes of silver nanoplates on SERS enhancement could be ignored because the basal planes were nearly unchanged in two kinds of silver nanoplate self-assembled films.  相似文献   

18.
Surface-enhanced Raman scattering (SERS) was used to characterize thin films of poly(α-methylstyrene) (PMS) spin-coated onto silver island films supported by glass substrates. At laser powers of a few tens of milliwatts, SERS spectra of thin films of PMS (about 100 Å) were weak, and only the bands near 1010 and 1040 cm?1 were observed. At laser powers of about 100 mW, additional bands characteristic of PMS were observed near 720 and 1610 cm?1. However, oxidative degradation of the PMS films to form graphite-like substances was also observed at the higher laser powers. When the thickness of the PMS films was increased to several hundred angstroms, degradation of the films was inhibited, but the intensity of the Raman scattering remained constant, indicating that the observed SERS was an interfacial rather than bulk effect. Degradation during SERS experiments was also inhibited by overcoating PMS films with much thicker films of poly(4-styrene sulfonate) (PSS). Scattering from the PSS overlayers was not observed as long as the thickness of the PMS films was greater than several tens of angstroms, again showing that the SERS was an interfacial effect. Oxidative degradation of the PMS films was also inhibited by adding a few percent of the antioxidant 2,6-di-tert-butyl-4-methylphenol to the polymer. Bands related to sulfite contaminants adsorbed onto the silver island films were observed near 640 and 940 cm?1. These bands disappeared when PSS, but not PMS, was spin-coated onto the SERS substrates, indicating a strong interaction between PSS and silver.  相似文献   

19.
Surface-enhanced Raman scattering (SERS) has been observed from thin films of polystyrene (PS), diglycidyl ether of bisphenol-A (DGEBA), and poly(4-vinyl pyridine) (PVP) deposited on silver island films Degradation of the polymers occurred rapidly during laser irradiation and was accompanied by the appearance of strong bands near 1375 and 1575 cm-1. These bands were attributed to the formation of graphite-like species by the silver-catalyzed thermal oxidation of the polymers induced by localized laser heating of the substrate. When the thin films of PS, DGEBA, or PVP were overcoated with much thicker films of a second polymer such as polystyrene sulfonate (PSS), the degradation was greatly reduced, and excellent SERS spectra of the PS, DGEBA, and PVP films were obtained. Overlayers reduced degradation within the first films deposited on silver island films by restricting the availability of oxygen at the interface to its solubility in the overlayer polymer or by altering the adsorption of oxygen onto the substrate. SERS was observed for the PS, DGEBA, and PVP films and the PSS overlayers when the films were deposited from relatively dilute solutions. When the PS, DGEBA, and PVP films were deposited from more concentrated solutions, SERS was not observed from the PSS overlayers. It was suggested that most of the SERS was due to a short-range, charge-transfer mechanism associated with sites of atomic scale roughness and that SERS was observed from the overlayer when the first film failed to occupy all of the sites.  相似文献   

20.
Thermal desorption spectra (TDS) of pyridine from silver films deposited in ultra high vacuum are reported. Marked differences in the TDS are seen depending on the deposition conditions and the thermal history of the films, which have been correlated with surface-enhanced Raman scattering (SERS). These results as well as some of the observations in electrochemical systems are discussed in light of the recent Xe probe analysis carried out by Albano et al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号