首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel trivalent europium(Eu~(3+))-activated La_7 Ta_3 W_4 O_(30):xEu~(3+)(x=0.5 mol%-40 mol%) red-emitting phosphors were synthesized by means of a high-temperature solid-state reaction.The structure,morphology,photoluminescence,thermal-stability properties,lifetime,and color-rendering of the prepared phosphors were investigated in detail.The La_7 Ta_3 W_4 O_(30):Eu~(3+) phosphors show five emission peaks under near-ultraviolet(n-UV) at 397 nm,and these peaks are ascribed to the transitions of ~5 D_0-~7 F_j(j=0,1,2,3 and 4) by Eu~(3+) ions.The optimal doping concentration of Eu~(3+) is 20 mol%,and the critical distance of the energy transfer between the Eu3+ions was calculated to be 1.768 nm.The quenching temperature(T_(0.5)) of La_7 Ta_3 W_4 O_(30):20 mol%Eu~(3+) is about 440 K.The quantum yield(QY) was measured to be 85.85%.The fabricated white-light-emitting diodes(w-LEDs) possess high color-rendering index(R_a) of 90,and high correlated color temperature(CCT) of 5810 K,respectively.The Commission Internationale de L'Eclairage(CIE) coordinates are(0.311,0.322).Therefore,the prepared phosphor has a promising application for w-LEDs.  相似文献   

2.
Ce~(3+) doped Bi_2O_3 hollow needle-shape with enhanced visible-light photocatalytic activity was successfully prepared via the method of chemical precipitation using Bi(NO_3)·5H_2O and Ce(NO_3)_3·6H_2O as the source of bismuth and cerium, HNO_3 as solvent and NaOH as precipitants, respectively and after calcination at 500 ℃ for 2 h. The morphology and elemental composition,crystal form,purity and specific surface area of the hollow needle Bi_2O_3 were characterized by SEM-EDS, XRD, BET and FT-IR. The photocatalytic properties of the as-obtained samples were measured by UV-vis diffuse reflection spectroscopy and photochemical reactor. As a result, the obtained Bi_2O_3 hollow needle-shape doped with 5 wt% Ce shows good morphology, α-phase, stronger absorbent for visible light and good photocatalytic property. Under the simulated visible light of 300 W, the photodegradation rate of tetracycline over HNBCe can reach to 89.1%,which is higher than that of commercial Bi_2O_3 nanoparticles and Bi_2O_3 hollow needle-shape.  相似文献   

3.
Alkali metal ions(M~+ = Na~+,Li~+,K~+) co-doped ZnAl_2O_4:Eu~(3+)(5 mol%)(ZAE) nanopowders(NPs) were prepared via solution combustion route using Mimosa pudica(MP) leaves extract as a fuel. PXRD results of co-doped samples enhance the crystallinity and grain growth. Photoluminescence(PL) of the prepared ZAE and ZAE:M~+(M~+ = Na~+, Li~+, K~+) NPs shows intense emission peaks in the range of 550-750 nm and ascribed to ~5D_0→~7F_J(J=0-4) transitions of Eu~(3+) ions, respectively. A 2-fold enhancement in PL intensity was observed in Li~+ co-doped samples. The optimized ZnAl_2O_4:Eu~(3+)(5 mol%), Li~+(1 wt%)(ZAEL)NPs were used to visualize LFPs on various porous, semi-porous and non-porous surfaces through robust powder dusting technique. The visualized latent fingerprints(LFPs) reveal well defined level 1-3 ridge characteristics under several tests such as fingerprint aging and fresh water treatment for various time durations. The obtained results clearly evidence that the prepared NPs are quite useful for multifunctional applications such as advanced forensic and solid state lightning.  相似文献   

4.
Eu~(3+) ions doped Zn(OH)F and ZnO micro-structures with specific morphologies were synthesized by a simple hydrothermal method only through altering the addition amount of NH_4F and hexamethylenetetramine(HMT). The phase structure, morphology and luminescence properties of the as-prepared samples were characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM),transmission electron microscopy(TEM), photoluminescence(PL) spectra and lifetime. The results indicate that the obtained Zn(OH)F:Eu~(3+) samples possess net-like and dandelion-like morphologies,which have an identical orthorhombic phase structure. It is found that the addition amount of raw materials such as NH_4F and HMT plays a critical role for the formation of Zn(OH)F:Eu~(3+). If the addition amounts of NH_4F or HMT are reduced by half, the hexagonal ZnO:Eu~(3+) sample with peanut-like morphology can be obtained. Under the excitation of UV light, both the as-prepared Zn(OH)F:Eu~(3+)and ZnO:Eu~(3+) samples exhibit the characteristic emission of the doped Eu~(3+).  相似文献   

5.
A novel single-phase Sm~(3+) activated Ca_5(PO_4)_2SiO_4 phosphor was successfully fabricated via a conventional solid-state method, which can be e fficie ntly excited by near ultraviolet(n-UV) light-emitting chips.The crystal structure and luminescence properties were characterized and analyzed systematically by using relevant instruments. The Ca_5(PO_4)_2SiO_4:Sm~(3+) phosphor shows an orange-red emission peaking at600 nm under the excitation of 403 nm and the optimal doping concentration of Sm~(3+) is determined to be 0.08, The critical distance of Ca_5(PO_4)_2SiO_4:0.08 Sm~(3+) is calculated to be 1.849 nm and concentration quenching mechanism of the Sm~(3+) in Ca_5(PO_4)_2SiO_4 host is ascribed to energy transfer between nearestneighbor activators. The decay time of Ca_5(PO_4)_2 SiO_4: 0,08 Sm~(3+) is determined to be 1.1957 ms. In addition, the effect of temperature on the emission intensity was also studied, 72.4% of the initial intensity is still preserved at 250 ℃, better thermal stability compared to commercial phosphor YAG:Ce~(3+) indicates that Ca_5(PO_4)_2SiO_4:0.08 Sm3+ has excellent thermal stability and active energy is deduced to be 0.130 eV.All the results demonstrate that orange-red emitting Ca_5(PO_4)_2SiO_4:0.08 Sm~(3+) phosphor exhibits good luminescent properties. Owing to the excellent thermal quenching luminescence property,Ca_5(PO4)_2SiO_4:0.08 Sm~(3+) phosphor can be applied in n-UV white light emitting diodes and serve as the warm part of white light.  相似文献   

6.
In order to effectively improve the afterglow properties of CaAl_2 O_4:Eu~(2+),Nd~(3+) phosphors,a series of Ca_(0.982-x)Al_2 O_4:0.012 Eu~(2+),0.006 Nd~(3+),xGd~(3+)(x=0,0.012,0.024,0.036,0.048,0.060 mol) phosphors were prepared by a high-temperature solid-phase approach.Crystalline composition and microstructure were characterized by XRD,TEM,HRTEM,and XPS,luminescence properties were systematically analyzed by fluorescence spectra,afterglow decay curves and TL glow curve.Results show that all of Ca_(0.982-x)Al_2 O_4:0.012 Eu~(2+),0.006 Nd~(3+),xGd~(3+)phosphors belong to monoclinic CaAl_2 O_4,without other cystalline phase.The blue emission at 442 nm is observed,which is assigned to the 4 f~65 d→4 f~7 transition of Eu~(2+) ions.Doping with appropriate amount of Gd~(3+) ions(x=0.036 mol) significantly improves the afterglow properties of phosphors,but the excessive doping of Gd~(3+) induces the fluorescent quenching.The doping of moderate Gd3+changes the traps states,the trap depth varies from 0.598 to 0.644 eV and the trap concentration is also greatly improved,thus significantly improving afterglow performance.  相似文献   

7.
This work investigated the effect of dysprosium(Dy)ions on the structural,microstructural and magnetic properties of nickel nanospinelferrite,NiFe_2 O_4.The nanoparticles(NPs)of NiDy_xFe_(2-x)O_4(0.0≤x≤0.1)were prepared via the hydrothermal method.The formation of cubic phase of Ni nanoferrite was confirmed through X-ray diffraction,field emission scanning and transmission electron microscopy.Moreover,the magnetic properties of NiDy_xFe_(2-x)P_4(0.01≤x≤0.10)NPs were discussed.The magnetization versus field,M(H)curves exhibit super paramagnetic nature at room temperature and ferrimagnetic nature at low temperature(10 K).A noticeable improvement in the different deduced magnetic parameters is obtained especially for the NiDy_(0.07)Fe_(1.93)O_4(x = 0.07)product.The obtained result is mostly derived from the substitution of Fe~(3+)ions of smaller ionic radii with Dy~(3+)ions of larger ionic radii that will strengthen the super exchange interactions among nanoparticles.The calculated squareness ratios are found to be much less than 0.5,due to the effect of spin disorder in the surface regions of NiDy_xFe_(2-x)O_4(0.01≤x≤0.10)NPs.The Dy~(3+) ions substitution increases the magnetic hardness(higher values of remanence M_r,coercivity H_c,and magnetic moment n_B)of nickel nanoferrite samples.  相似文献   

8.
Broadband sensitization is an effective strategy to enhance the upconversion luminescence(UCL) of lanthanide ions.Herein,novel UC materials LiScSi_2 O_6:Cr~(3+)/Er~(3+)(LSS:Cr~(3+)/Er~(3+)) were synthesized by high-temperature solid state reaction and their luminescent properties were investigated.LSS:Cr~(3+)/Er~(3+)has the broadband absorption in the spectral range of 600-800 nm,and meanwhile shows green UC emissions of Er~(3+)upon pumping Cr~(3+) by the 690 nm laser.The UCL of LSS:Cr~(3+)/Er~(3+)belongs to the twophoton process and is attributed to the energy transfer upconversion mechanism.The effects of the Cr~(3+)and Er~(3+)concentration as well as the Yb~(3+)introduction were also studied.LSS:Cr~(3+)/Yb~(3+)/Er~(3+) exhibits the interesting dual-mode UCL,capable of generating the UCL of Cr~(3+) upon pumping Yb~(3+)ions and the UCL of upon pumping Cr~(3+) ions.This research might promote the development of novel broadband Cr~(3+)-sensitized UC materials.  相似文献   

9.
The electronic,mechanical and optical properties of La-and Sc-doped Y_2O_3 were investigated using firstprinciples calculations.Two doping sites of Sc and La in Y_2O_3 were modeled.The calculated values of the energy of formation show that the most energetically favorable site for a La atom in Y_2O_3 is a d-site Y atom,while for Sc a b-site Y atom is the more stable position.The calculated band gap shows a slight decrease with increasing La or Sc concentration.The calculated results for the mechanical and optical properties of Y_(2-x)R_xO_3(R = Sc or La,0x ≤ 0.1875)show that La-or Sc-doped Y_2O_3 would have enhanced strength,and thus an ability of resisting external shocks,and increased hardness and mechanical toughness.These improved mechanical properties are achieved without sacrificing the optical properties of the doped compounds.So the doping of La or Sc in Y_2O_3 is permissible in the preparation of Y_2O_3 transparent ceramics,of course,doping of La or Sc will benefit the sintering of transparent ceramics.  相似文献   

10.
A series of non-rare earth Mn4+-activated strontium aluminate phosphors Sr4Al14O25:Mn4+co-doped with Sc3+ions were successfully synthesized by a high-temperature solid-state reaction method.XRD result reveals that there is no introduction of additional phase but expansion of lattice with incorporation of Sc34 ions.Excitation and emission spectrum measurement shows that the synthesized phosphors can be efficiently excited by near-ultraviolet and blue light,and a deep red emission centered at 652 nm with a narrow full width at half maximum(FWHM)can be obtained,which is attributed to the transition2E→4A2of Mn4+ions.In addition,the crystal field strength parameter(Dq)and Racah parameters(B,C)and energies of states were calculated based on experimental data.Moreover,the luminous intensity of Sr4Al14-xSCxO25:Mn4+is enhanced and increased by 60%compared with Mn4+single incorporated sample at x=0.06.A phenomenon of redshift is observed in the excitation spectrum and discussed systematically.Finally,the mechanism of the positive effects with Sc3+ions incorporated into lattice is discussed in detail.All the results suggest that the Sr4Al13.94Sc0.06O25:Mn4+phosphor will become one of the great candidates for backlight of LCD.  相似文献   

11.
A novel red-emitting phosphor tantalate Ca_2 YTaO_6:Eu~(3+)was synthesized by a solid-state reaction.The purity and surface morphology of the phosphors were characterized.The Ca_2 YTaO_6:Eu~(3+)phosphors show a sharp emission peak at 612 nm under near-ultraviolet(n-UV) at 395 nm because of the ~5 D_0→~7 F_2 transition of Eu3+.The optimal Eu3+doping concentration in Ca2 YTaO_6 is 40 mol% and the critical energy-transfer distance of Eu3+ions was calculated to be 0.9 nm.The emission spectra of Ca_2 YTaO_6:Eu3+from 300 to 480 K were investigated.The thermal-quenching temperature(T_(0.5)) of Ca_2 YTaO_6:Eu~(3+)is above 480 K.The color purity of Ca_2 YTaO_6:40 mol%Eu3+is as high as 99.8%.The luminescence lifetime of Ca_2 YTaO_6:40 mol%Eu~(3+)was also discussed.The high color purity and high thermal stability of Eu~(3+)-doped Ca2 YTaO6 phosphors contribute to its application value in white lightemitting diodes(w-LEDs).  相似文献   

12.
In order to investigate the effect of the La_2O_3 on the phase separation and crystallization of ZnO-B_2O_3-SiO_2 glass, after the occurence of the phase separation and crystallization of glasses by heat treatment, the microstructure morphology and distribution of elements in different sample areas were characterized by the scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS); the non-isothermal crystallization kinetics of the glass samples was studied by using a differential scanning calorimeter(DSC) and the precipitated crystals of crystallized glass were determined by the X-ray diffraction(XRD). The results suggest that the phase separation and crystallization of 60ZnO-30 B_2O_3-10SiO_2 glass occur at glass surface, and the incorporation of small amount(4 mol%) of La_2O_3 significantly inhibits the glass phase separation and consequently improves the thermal stability of glass.Doping of La_2O_3 accelerates the glass crystallization at the elevated temperature(660 ℃), making the depth of crystal layer thicker and diffraction intensity in XRD patterns stronger. However, due to the precipitation of several crystals that occur simultaneously when La_2O_3 doping amount is 4 mol%, crystallization of the 60ZnO-30B_2O_3-10SiO_2 glass is obviously depressed, the crystallization activation energy Ec and the relative crystallinity X_c of the glass reach the maximum and the minimum values, respectively.Although transition from one-dimensional growth of crystals to two-dimensional growth of crystals results from La_2O_3 addition, the one-dimensional growth of crystals remains dominant in crystallization process. This work can provide some useful information for preparing glass ceramics with nano-crystals precipitated in the glass surface.  相似文献   

13.
The structural and spectroscopic properties of MgAl2O4:1%Nd3+ spinel nanocrystals and ceramics were measured and analyzed. Ceramics were prepared from the above mentioned spinel nanocrystals and undoped commercial spinel powder, using the spark plasma sintering(SPS) method. Properties of the obtained ceramics strongly depended on the SPS conditions. The samples were not homogeneous and possessed defects and pores. The most transparent ceramics had 60% transparency at 1000 nm.  相似文献   

14.
We synthesized NaY(MoO_4)_2:Eu~(3+)phosphors of different doping concentrations by a molten salt method.This facile way possesses advantages such as simple process,lower calcination temperature(350℃) and small particle size(70 nm).The crystal system is tetragonal phase and crystal lattice is body centered.The photo luminescence measurements including emission spectra,excitation spectra and fluorescence decay curves were carried out,elucidating that NaY(MoO_4)_2:Eu~(3+)can be effectively excited by near UV and blue light.Moreover,it can be concluded that Eu3+energy transfer type is exchange interaction.Huang-Rhys factor and the critical energy transfer distance(Rc) were calculated to be 0.043 and 0.995 nm,respectively.Auzel's model was used to obtain the intrinsic radiative transition lifetime of~5 D_0 level(τ_0=0.923 ms).Furthermore,a calculation method was used to calculate refractive index n of nontransparent NaY(MoO_4)_2:1 mol% Eu3+phosphor,and n was obtained to be 1.86.  相似文献   

15.
Two kinds of Cu-Al_2O_3 composites(with and without La) were prepared via mechanical alloying-spark plasma sintering(MA-SPS) method. Microstructure, mechanical properties and electrical resistivity were investigated systematically using metallography, scanning electron microscopy, transmission electron microscopy, mechanical and electrical properties testing. The results indicate that an appropriate amount of La can homogenize the distribution of Al_2O_3. As such, yield strength, ultimate tensile strength and elongation of Cu-Al_2O_3-La are greatly increased. Some semi-coherent interface between Cu and Al_2O_3 is found, which means a low interface energy. The grain shape of Cu changes to irregular band with the addition of La. This change results in a density decrease of grain boundary and reduces electrical resistance. Lanthanum may exist in the form of La_2O_3.  相似文献   

16.
Europium-doped nanocrystalline Y2O3 phosphor layers were coated on the surface of preformed submicron BaSO4 spheres via the sol-gel process.The obtained BaSO4/Y2O3:Eu3+ core-shell phosphors were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),energy dispersive spectroscopy(EDS) and photoluminescence spectra.The results showed that the obtained BaSO4/Y2O3:Eu3+ core-shell phosphors consisted of well-dispersed submicron spherical particles with na...  相似文献   

17.
This paper reports a facile environmentally safe green combustion synthesis method of La~(3+) doped CdO nanoparticles(NPs) using different concentrations of Aloe vera(A.V) gel as combustible material. The crystallite size obtained using PXRD pattern is found to be 12-22 nm. The structural analysis was further analysed by Rietveld refinement technique. The X-ray photoelectron spectroscopy(XPS) analysis reveals the presence of two electronic states of CdO around 400 and 411 eV attributed to Cd ~3 d_(3/2) and ~3 d_(3/2),respectively. The photoluminescence(PL) studies were carried upon 350 nm excitation wavelength. The PL emission spectra are found to have two prominent peaks centered at 410 and 510 nm and are attributed to ~5D_3→~7F_1 and ~5D_1→~7F_0 transitions, respectively. The Commission International de l'Eclairage(CIE) chromaticity diagram reveals blue-green color emission. The correlation color temperature(CCT) value is found to be around ~9793 K. The obtained results suggest that the product is quite useful for cool light emitting diode applications when doping concentration is 2 mol%.  相似文献   

18.
Pd/Ce_(0.67)Zr_(0.33)O_2 catalyst was pretreated in different atmosphere respectively, and characterized by CO chemical adsorption, XPS, HR-TEM, H_2-TPR, Raman, OSC and in situ DRIFTS to investigate the effect of the structure properties of PdO_x species on the catalytic performance for CO, HC and NO_x elimination. The results show that Pd/CZ catalyst pretreated in air atmosphere has higher oxidation activity of HC due to having high Pd dispersion and strong interaction between PdO_x and CZ support. Pd/CZ-H catalyst pretreated in reducing atmosphere exhibits better catalytic performance of NO_x elimination because of having relatively big Pd particle size, more Pd species in metallic state and higher concentration of oxygen vacancies. While for the Pd/CZ-RG catalyst pretreated in reactant atmosphere, strong adsorption of HC species on the surface of catalysts would lead to a part of active sites being covered, which inhibits HC and NO conversions.  相似文献   

19.
Eu2+/Sm3+co-doped dual-emitting Sr4La(PO4)3O phosphors were synthesized through a convenient high temperature solid state reaction in reductive atmosphere.The structure,luminescence,energy transfer and temperature-dependent luminescence properties of Eu2+/Sm3+co-doped Sr4La(PO4)3O phosphors were researched and analyzed in detail.The blue emission of Eu2+and the red emission of Sm3+can work together as FIR signals.Based on the different response characteristics of these two ion emissions to temperature,Sr4La(PO4)3O:Eu2+/Sm^(3+)phosphor achieves the relative sensitivity of0.48384%/K and a wide range of temperature measurements from room temperature to 573 K.The results reveal that the Sr4La(PO4)3O:Eu2+/Sm3+phosphor has application prospect in the field of high temperature optical thermometry.The energy transfer mechanism is proved to be the dipole-dipole interaction between Eu2+and Sm3+ions.  相似文献   

20.
Blue-emitting phosphors Sr_6 Ca_4(PO_4)_6 F_2:Eu~(2+)(SCPF:Eu~(2+)),Sr_6 Ca_4(PO_4)_6 F_2:Eu~(2+),Dy~(3+)(SCPF:Eu~(2+),Dy~(3+))and Sr_6 Ca_4(PO_4)_6 F_2:Eu~(2+),Dy~(3+),Si~(4+)(SCPF:Eu~(2+),Dy~(3+),Si~(4+)) with apatite structure were successfully synthesized by traditional solid-state reaction under reducing atmosphere.Eu~(2+),Dy~(3+) and Si4+ions occupy the corresponding sites of Sr~(2+),Ca~(2+) and P~(5+).Strong broad blue photo luminescence band is exhibited in SCPF:Eu~(2+),Dy~(3+) phosphor ranging from 400 to 550 nm centered at 455 nm and Dy~(3+) ions are vital in creating traps.Emission intensity of Eu~(2+),Dy~(3+) co-doped SCPF:0.02 Eu~(2+),0.02 Dy~(3+) is about 1.8 times that of SCPF:0.02 Eu~(2+) and electron trap centers serve as energy transporting media.To further elucidate the formation and effect of the specific defect on the luminescence of SCPF:0.02 Eu~(2+),0.02 Dy~(3+) phosphor,the thermoluminescence properties,decay curves and thermal stability studies were performed while the Si~(4+)-P~(5+) charge compensated pho sphor SCPF:0.02 Eu~(2+),0.02 Dy~(3+),0.02 Si~(4+) was prepared as a contrast.All the results of present work indicate that Dy~(3+) co-doping can obviously enhance photoluminescence intensity of SCPF:0.02 Eu~(2+) by the electron traps generated by non-equivalence replacement of Dy~(3+)-Ca~(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号