首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A 355-nm neodymium:yttrium aluminum garnet laser, produced by a harmonic generator, was used for the nucleation process in photosensitive glass containing Ag+ and Ce3+ ions. The pulse width and frequency of the laser were 8 ns and 10 Hz, respectively. Heat treatment was conducted at 570°C for 1 h, following laser irradiation, to produce crystalline growth, after which a LiAlSi3O8 crystal phase appeared in the laser-irradiated Li2O–Al2O3–SiO2 glass. The present study compares the effect of laser-induced nucleation on glass crystallization with that of spontaneous nucleation by heat treatment.  相似文献   

2.
3.
The transformation kinetics and microstructures of glass-ceramics, which deviate from those of a stoichiometric cordierite compound, are greatly dependent on the compositions of the starting glasses. Compositions richer in (MgO,SiO2) than the stoichiometric cordierite compound suppress the formation of μ-cordierite, yet enhance the crystallization of α-cordierite, resulting in a higher content of α-cordierite. In contrast, compositions richer in Al2O3 than the stoichiometric cordierite compound have no effect on the crystallization of α-cordierite. Thus, most of the glass crystallizes to μ-cordierite in the initial stage, followed by the slow transformation of μ-cordierite into an α-phase, which results in a low content of α-cordierite.  相似文献   

4.
In this work, the liquidus of synthetic CaO–SiO2–MgO–Al2O3–CrO x slags is evaluated in the industrially relevant compositional domain. Equilibrium experiments are carried out at 1500°C and partial oxygen pressure ( p O2) 10−11.04 atm, and at 1600°C and p O2=10−10.16 and 10−9.36 atm. The studied basicities (CaO/SiO2) are 1.2 and 0.5. Al2O3 levels range from 0 to 30 wt%. Oversaturated liquid is sampled and phase relations are measured with quantitative electron probe microanalysis–wavelength dispersive spectroscopy (EPMA–WDS). The results are compared with the commercially available FactSage thermodynamic databases. Qualitative agreement is always obtained. Also a good quantitative agreement is found at the higher basicity, especially for the spinel liquidus. A minor but systematic deviation can be observed for the eskolaite liquidus. At the lower basicity, the calculated phase diagram deviates strongly from the experimental results, probably due to missing ternary interactions in the database.  相似文献   

5.
The devitrification kinetics and mechanism of a low-dielectric, low-temperature, cofirable K2O–CaO–SrO–BaO–B2O3–SiO2 glass-ceramic have been investigated. Crystalline phases including cristobalite (SiO2) and pseudowollastonite ((Ca,Ba,Sr) SiO3) are formed during firing. Activation energy analysis shows that the nucleation of the crystalline phases is controlled by phase separation of the glass. The crystallization kinetics of both cristobalite and pseudowollastonite obey Avrami-like behavior, and the results show an apparent activation energy close to that of the diffusion of alkaline and alkali ions in the glass, suggesting that diffusion is rate limiting. The above conclusion is further supported by analysis of measured growth rates.  相似文献   

6.
Effects of Ag addition on sintering of a crystallizable CaO-B2O3-SiO2 glass have been investigated at 700°–900°C in different atmospheres. With Ag content increasing in the range of 1–10 vol%, the softening point, the densification, the onset crystallization temperature, and the total amount of crystalline phase formed of the crystallizable glass are reduced when fired in air. A bloating phenomenon is observed when the crystallizable CaO-B2O3-SiO2 glass doped with 1–10 vol% Ag is fired at 700°–900°C for 1–4 h. Fired in N2 or N2+ 1% H2, however, the above phenomena disappear completely. It is thus believed that the diffusion of Ag into the crystallizable glass, which is caused by the oxidation of Ag in air, is the root cause for the above results observed.  相似文献   

7.
Results are presented of a study of phase equilibria among crystalline and liquid phases in the quaternary system CaO–MgO-Al2O3–SiO2 at Al2O3 contents greater than 35%. Equilibrium diagrams shown are for the five triangular joins CaAl2Si2O3-Ca2Al2SiO7-MgAl2O4, Ca2Al2SiO7-MgAl2O4-Al2O3, CaAl2Si2O8-MgO-Al2O3, CaAl2Si2O8-Mg2SiO4-MgAl2O4, and CaAl2Si2O8-MgO-Mg2SiO4. The composition and nature of the four quaternary peritectic points and the relationships of univariant lines and primary phase volumes are discussed.  相似文献   

8.
In this final paper of a series on viscosity in the system CaO—MgO-Al2O3SiO2 data are presented for melts containing 60 and 65% SiO2. There also are diagrammatic presentations of the systems of isokoms at intervals on planes parallel to the zero alumina, zero lime, and zero magnesia faces of the tetrahedron, the apices of which represent 100% of each of the four oxides that make up the system.  相似文献   

9.
Compatibility relations of Al2O3 in the quaternary system Al2O3–CaO–MgO–SiO2 were studied by firing and quenching followed by microstructural and energy-dispersive X-ray examination. A projection of the liquidus surface of the primary phase volume of Al2O3 was constructed in terms of the CaO, SiO2, and MgO contents of the mixtures recalculated to 100 wt%. Two invariant points, where four solids coexist with a liquid phase, were defined, and the positions of the isotherms were tentatively established. The effect of SiO2, MgO, and CaO impurities on Al2O3 growth also was studied.  相似文献   

10.
Aluminosilicate and silicate glass-ceramics were obtained from controlled devitrification of CaO–Al2O3–SiO2 glassy systems starting from Spanish and Italian coal fly ash or Italian municipal incinerator slag mixed with other byproducts, such as glass cullet and dolomite. The nucleation mechanism and the crystallization kinetics were investigated by thermal, diffractometric, and microstructural measurements. Moreover, the experimentally observed devitrification and the identification of the crystalline phases formed were compared with the indications derived from Ginsberg, Raschin-Tschetveritkov, and Lebedeva diagrams used for petrological glass-ceramics. All the glasses showed a good crystallization tendency with the formation of dendritic pyroxene and acicular wollastonite together with feldspar and iron spinels starting from the surface. The activation energy values for crystallization ranging from 472 to 832 kJ ·mol−1 were found to be close to those typical for aluminosilicate glasses; moreover, the possibility to vitrify and devitrify up to 100 wt% of slag and up to 40–50 wt% of ash mixed with glass cullet and dolomite makes the vitrification treatment a suitable disposal procedure.  相似文献   

11.
12.
Thermal barrier coatings (TBCs) are increasingly susceptible to degradation by molten calcium–magnesium alumino silicate (CMAS) deposits in advanced engines that operate at higher temperatures and in environments laden with siliceous debris. This paper investigates the thermochemical aspects of the degradation phenomena using a model CMAS composition and ZrO2–7.6%YO1.5 (7YSZ) grown by vapor deposition on alumina substrates. The changes in microstructure and chemistry are characterized after isothermal treatments of 4 h at 1200°–1400°C. It is found that CMAS rapidly penetrates the open structure of the coating as soon as melting occurs, whereupon the original 7YSZ dissolves in the CMAS and reprecipitates with a different morphology and composition that depends on the local melt chemistry. The attack is minimal in the bulk of the coating but severe near the surface and the interface with the substrate, which is also partially dissolved by the melt. The phase evolution is discussed in terms of available thermodynamic information.  相似文献   

13.
14.
Three distinctly different microstructures of silica (as quartz and crystobalite), alumina, enstatite, and celsian, were found to develop in a 60SiO2–20MgO–10Al2O3–10BaO glass ceramic. At 1010°C, growth of wormy fibrillar crystals was observed, indicating that crystal growth was diffusion controlled. At the intermediate temperature of 1080°C, a coarse cellular microstructure developed with multiple spherical particles nucleated on their surfaces and in the surrounding glass. At 1200°C, the glass crystallizes in a denderitic morphology but the dendrites were actually fragmented into multiple cube-shaped enstatite crystals, indicating a transition to interface-controlled growth. The crystals coarsen with time but maintain their order along the dendrite skeletons.  相似文献   

15.
In this work several complementary techniques have been employed to carefully characterize the sintering and crystallization behavior of CaO–Al2O3–ZrO2–SiO2 glass powder compacts after different heat treatments. The research started from a new base glass 33.69 CaO–1.00 Al2O3–7.68 ZrO2–55.43SiO2 (mol%) to which 5 and 10 mol% Al2O3 were added. The glasses with higher amounts of alumina sintered at higher temperatures (953°C [lower amount] vs. 987°C [higher amount]). A combination of the linear shrinkage and viscosity data allowed to easily find the viscosity values corresponding to the beginning and the end of the sintering process. Anorthite and wollastonite crystals formed in the sintered samples, especially at lower temperatures. At higher temperatures, a new crystalline phase containing ZrO2 (2CaO·4SiO2·ZrO2) appeared in all studied specimens.  相似文献   

16.
The nucleation and crystallization kinetics of new glasses obtained by melting mixtures of a Spanish carbon fly ash with glass cullet and dolomite slag at 1500°C has been evaluated by a calculation method. These glasses, whose microstructure was examined by TEM carbon replica, were susceptible to controlled crystallization in the 800°–1100°C range. The resulting glass-ceramics developed acicular and branched wollastonite crystals or a network of dendritic pyroxene mixed with anorthite feldspar (SEM and EDX analysis). The time–temperature–transformation curves (processing of the XRD data) showed the crystallization kinetics and the critical cooling rate to be in the 12°–42°C/min range.  相似文献   

17.
Solid-state compatibility and melting relations of MgAl2O4 in the quaternary system Al2O3–CaO–MgO–SiO2 were studied by firing and quenching selected samples located in the 65 wt% MgAl2O4, plane followed by microstructural and energy dispersive X-ray analysis. A projection of the liquidus surface of the primary crystallization volume of MgAl2O4 was constructed from CaO, SiO2 and exceeding Al2O3, not involved in stoichiometric MgAl2O4 formation; those three amounts were recalculated to 100 wt%. The temperature and character of six invariant points, where four solids co-exist with a liquid phase, were defined. One maximum point was localized and the positions of the isotherms were tentatively established. The effect of CaO, SiO2, and Al2O3 impurities on the high temperature behavior of spinel materials was also discussed.  相似文献   

18.
19.
The system CaO–MgO–Al3O3 has been assessed with the Calphad technique using a computerized optimization procedure called parrot . The rather meager experimental information, mainly on liquidus relations, is described reasonably well, but the lack of data, especially on solid-phase relations, implies that the present assessment should be regarded as provisional. The system contains one stable ternary phase with the stoichiometry 3CaO·2Al2O3·MgO.  相似文献   

20.
The liquid and solid phases in the FeO–Fe2O3–MgO–SiO2 system are of importance in ceramics, metallurgy, and petrology. A complete critical evaluation and thermodynamic modeling of the phase diagrams and thermodynamic properties of this system are presented. Optimized equations for the thermodynamic properties of all phases are obtained that reproduce all available thermodynamic and phase equilibrium data within experimental error limits from 25°C to above the liquidus temperatures at all compositions and oxygen partial pressures. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. The database of the model parameters can be used with software for Gibbs energy minimization to calculate any type of phase diagram section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号