首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical decomplexing and oxidation of two frequently used complexing agents in surface treatment and metal finishing—EDTA (ethylenediaminetetraacetic acid) and NTA (nitrilotriacetic acid)—and of organic non‐complexing additives used in nickel‐plating baths were the subject of this study. Using a Ti–RuO2 electrode, a partial indirect oxidation by in‐situ electrochemical generation of chlorine compounds could be achieved for EDTA and NTA. At a boron‐doped diamond (BDD) electrode however, complete decomplexing and high COD (Chemical Oxygen Demand) and TOC (Total Organic Carbon) (up to 95%) removal occurred at an average current density of 2 A dm?2. It is shown that direct electrochemical oxidation at a BDD electrode resulted in lower energy consumption and higher treatment rates than indirect oxidation at a Ti–RuO2 electrode. Decomplexing at the BDD electrode occurred at high current efficiencies ranging from 71% to 95% with decomplexing rates in the order of 3.13 mmol (Ah)?1 and 5.02 mmol (Ah)?1 for EDTA and NTA respectively. COD removal rates obtained were 0.090 g (Ah)?1 for EDTA, 0.100 g (Ah)?1 for NTA and 0.205 g (Ah)?1 for the nickel‐plating additives. Electrochemical decomplexing and oxidation of common chelating agents can render the subsequent metal precipitation and biological wastewater treatment of surface treatment and metal finishing effluents more efficient. Copyright © 2003 Society of Chemical Industry  相似文献   

2.
Wastewaters generated by a factory processing marine products are characterized by high concentrations of organic compounds and salt constituents (>30 g dm?3). Biological treatment of these saline wastewaters in conventional systems usually results in low chemical oxygen demand (COD) removal efficiency, because of the plasmolysis of the organisms. In order to overcome this problem a specific flora was adapted to the wastewater from the fish‐processing industry by a gradual increase in salt concentrations. Biological treatment of this effluent was then studied in a continuous fixed biofilm reactor. Experiments were conducted at different organic loading rates (OLR), varying from 250 to 1000 mg COD dm?3 day?1. Under low OLR (250 mg COD dm?3 day?1), COD and total organic carbon (TOC) removal efficiencies were 92.5 and 95.4%, respectively. Thereafter, fluctuations in COD and TOC were observed during the experiment, provoked by the progressive increase of OLR and the nature of the wastewater introduced. High COD (87%) and TOC (99%) removal efficiencies were obtained at 1000 mg COD dm?3 day?1. © 2002 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Industrial surfactants are biologically complex organics that are difficult to degrade and may cause ecotoxicological risks in the environment. Until now, many scientific reports have been devoted to the effective treatment of surfactants employing advanced oxidation processes, but there is no available experimental study dealing with the optimization and statistical design of surfactant oxidation with the well‐established H2O2/UV‐C process. RESULTS: Considering the major factors influencing H2O2/UV‐C performance as well as their interactions, the reaction conditions required for the complete oxidation of a commercial non‐ionic textile surfactant, an alkyl ethoxylate, were modeled and optimized using central composite design‐response surface methodology (CCD‐RSM). Experimental results revealed that for an aqueous non‐ionic surfactant solution at an initial chemical oxygen demand (COD) of 450 mg L?1, the most appropriate H2O2/UV‐C treatment conditions to achieve full mineralization at an initial pH of 10.5 were 47 mmol L?1 H2O2 and a reaction time of 86 min (corresponding to a UV dose of 30 kWh m?3). CONCLUSION: CCD allowed the development of empirical polynomial equations (quadratic models) that successfully predicted COD and TOC removal efficiencies under all experimental conditions employed in the present work. The process variable treatment time, followed by the initial COD content of the aqueous surfactant solution were found to be the main parameters affecting treatment performance, whereas the initial H2O2 concentration had the least influence on advanced oxidation efficiencies. The H2O2 concentration and surfactant COD were found to be more important for TOC abatement compared with COD abatement. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
The electrochemical oxidation of anionic (sodium dodecylbenzenesulfonate) and cationic (hexadecyltrimethyl ammonium chloride) aqueous dilute surfactant solutions at a BDD (boron-doped diamond) electrode has been studied by batch electrolysis experiments and potentiodynamic measurements. In the potential region of water decomposition (E>2.3 V vs. SHE), surfactants could be deactivated and oxidised with total organic carbon (TOC) removals up to 82% by the action of intermediates of water discharge (e.g. hydroxyl radicals). Of the investigated process parameters, the initial electrolyte pH had the highest impact on surfactant oxidation. An initial pH of 10 significantly enhanced the electrochemical oxidation of both surfactants. The process was not diffusion-controlled and instantaneous current efficiencies (ICE) for TOC removal were in all cases low, varying from 5 to 12% on average. The surfactant deactivation and oxidation potential of the BDD electrode was compared with other carbon-based electrodes. Applying an equal electrode surface, the BDD electrode showed much higher surfactant removals compared to plane graphite. Graphite granules and carbon felt suffered from abrasion, leading to additional carbon loading of the surfactant solutions. Based on the current electrolysis configuration, the specific energy requirement with the BDD electrode for the electrochemical oxidation of surfactants was estimated at 10-20 kW h m−3 effective wastewater.  相似文献   

5.
Micelle formation by the anionic amino acid‐based surfactant undecyl l ‐phenylalaninate (und‐Phe) was investigated as a function of pH in solutions containing either Na+, l ‐arginine, l ‐lysine, or l ‐ornithine counterions. In each mixture, the surfactant's critical micelle concentration (CMC) was the lowest at low pH and increased as solutions became more basic. Below pH 9, surfactant solutions containing l ‐arginine and l ‐lysine had lower CMC than the corresponding solutions with Na+ counterions. Nuclear magnetic resonance (NMR) diffusometry and dynamic light scattering studies revealed that und‐Phe micelles with Na+ counterions had hydrodynamic radii of approximately 15 Å throughout the investigated pH range. Furthermore, l ‐arginine, l ‐lysine, and l ‐ornithine were found to bind most strongly to the micelles below pH 9 when the counterions were cationic. Above pH 9, the counterions became zwitterionic and dissociated from the micelle surface. In und‐Phe/l ‐arginine solution, counterion dissociation was accompanied by a decrease in the hydrodynamic radius of the micelle. However, in experiments with l ‐lysine and l ‐ornithine, micelle radii remained the same at low pH when counterions were bound and at high pH when they were not. This result suggested that l ‐arginine is attached perpendicular to the micelle surface through its guanidinium functional group with the remainder of the molecule extending into solution. Contrastingly, l ‐lysine and l ‐ornithine likely bind parallel to the micelle surface with their two amine functional groups interacting with different surfactant monomers. This model was consistent with the results from two‐dimensional ROESY (rotating frame Overhauser enhancement spectroscopy) NMR experiments. Two‐dimensional NMR also showed that in und‐Phe micelles, the aromatic rings on the phenylalanine headgroups were rotated toward the hydrocarbon core of micelle.  相似文献   

6.
The electrochemistry of three surfactants has been studied by voltammetry at boron doped diamond (BDD) electrode in sodium sulphate solutions. The electrochemical behaviour of these surfactants is characterized by an oxidation signal (peak or wave) situated before the electrolyte oxidation. The anodic current is found to follow a linear relation with the concentration of the surfactants; the slope decreases abruptly above the critical micellar concentration (CMC) of the surfactants. The CMC values obtained for an anionic (sodium dodecylbenzenesulfonate, SDBS), a cationic (polyoxyethylene-23-dodecyl ether, BRIJ 35) and a neutral (1-(hexadecyl)trimethylammonium bromide, CTAB) surfactant are found in good agreement with those measured by the classical technique of surface tension. This voltammetric method has the advantage not to require the use of a redox active electrochemical probe.  相似文献   

7.
In order to assess the potential for utilizing wastewater biosolids as a source of useful substances, the surface activity of materials extracted from wastewater biosolids (activated sludge) by simple incubation with sodium hydroxide solutions at room temperature was assessed. The surface activity, measured by surface and interfacial tension methods, of the extracts was shown to be dependent on the extraction pH and the concentration of the organic matter solubilized in the alkaline solution. Increasing the extraction pH increased the surface activity of the extract (lower surface tensions), which is linked to the presence of more hydrophobic species in the extract. After adjusting the pH to more acidic values (e.g., pH = 4), the extracts retained their surface activity. The apparent CMC (critical micelle concentration) of pH 12.6 extracts was approximately 1,000 mg/L (based on total organic carbon or TOC), and the surface tension after CMC approximately 35 mN/m. While the CMC of the extract is significantly higher, when compared to a conventional surfactant, sodium dodecyl benzene sulfonate (SDBS, CMC ~ 25 mg/L), its surface tension at CMC was comparable. Above its CMC, the pH 12.6 extract had similar interfacial tensions than SDBS against toluene, heptane and hexadecane. Furthermore, the extract and SDBS had similar detergency performance for the removal of hexadecane from cotton. Skin corrosivity tests of the neutralized extracts show that they have comparable toxicity to conventional anionic surfactants such as sodium dodecyl sulfate. The potential use of these extracts in commercial products is discussed.  相似文献   

8.
In this study the treatment efficiency of different ultraviolet (UV)-enhanced ozonation processes for degradation of two surfactants, sodium dodecylbenzene sulfonate [200 mg/L or 0.3 critical micelle concentration (CMC)] and a nonylphenol ethoxylate with 40 oxyethylene units (200 mg/L ~0.5 CMC), were investigated in laboratory-scale experiments at ambient temperature. The absorbance band of the aromatic ring of the surfactants was monitored during the oxidation process. The reduction in chemical oxygen demand (COD) and total organic carbon (TOC) of the surfactant solution was evaluated. The results showed that a combination of UV irradiation and ozonation was considerably more efficient than the individual processes (at least two times more efficient in terms of COD and TOC reductions). The synergistic effect of ozonation and UV irradiation was particularly pronounced when medium-pressure UV irradiation was used. By adding alkali to the solution, the efficiency of the UV-enhanced ozonation increased with respect to COD reduction but decreased with respect to TOC reduction. This indicates partial oxidation with lower degree of mineralization of the surfactants.  相似文献   

9.
Micellar solutions of anionic surfactants usually precipitate in the presence of cations, following a mechanism by which initially cations bind themselves to the micellar surface until saturation is achieved. At higher cation concentrations, unbound cations precipitate with surfactant monomers. In a few cases cations, and especially Al3+, cause surfactant micelles to flocculate. These flocs have properties as adsorbents of acidic organic compounds, which might be used in water treatment processes. Both α-olefinsulfonates C14−C16, and laurylsulfate micellar solutions are fast flocculation colloidal systems in the presence of Al3+.  相似文献   

10.
Aqueous solutions of five selected non-ionic surfactants: Triton (i-octylphenolethoxylates), Tergitol (2,6,8-trimethyl-4-nonanoloxethylates), Symperonic (n-nonylphenol-oxethylates) and Brij (fatty alcohol ethoxylates) were investigated in this study. Using the bioluminescent bacteria Vibrio fischeri the toxicity of the surfactants solutions were determined. An attempt was made to relate rather low biodegradability of nonionic surfactant solutions measured by the BOD5/COD ratio (ranging from 1 to 17%) to their toxicity. The ozonation process was carried out in a 1.5 dm3 stirred cell reactor equipped with two ozone detectors. The following parameters were analyzed: pH, COD, BOD5, DOC, TOC, polarography as well as UV spectrum. The positive effect of ozonation, represented by decay of UV absorption, was visible in almost complete destruction of the surfactants, with exception of Triton X-705 (only 65% degradation after absorption of 2000 mgO3/dm3). The most striking results were obtained in toxicity tests for ozonated solutions of the non-ionic surfactants – an increase of the bacterial growth inhibition (1.5 to 4 times increase in toxicity due to ozonation). The obtained results were discussed taking into account the literature and our own experimental data on mechanisms of ozonation and biodegradation of non-ionic surfactants of the Triton-type and similar chemical structures.  相似文献   

11.
This work evaluates Fenton oxidation for the removal of organic matter (COD) from cork‐processing wastewater. The experimental variables studied were the dosages of iron salts and hydrogen peroxide. The COD removal ranged from 17% to 79%, depending on the reagent dose, and the stoichiometric reaction coefficient varied from 0.08 to 0.43 g COD (g H2O2)?1 (which implies an efficiency in the use of hydrogen peroxide varying from 17% to 92%). In a study of the process kinetics, based on the initial rates method, the COD elimination rate was maximum when the molar ratio [H2O2]o:[Fe2+]o was equal to 10. Under these experimental conditions, the initial oxidation rate was 50.5 mg COD dm?3 s?1 with a rate of consumption of hydrogen peroxide of 140 mg H2O2 dm?3 s?1, implying an efficiency in the use of the hydrogen peroxide at the initial time of 77%. The total amount of organic matter removed by Fenton oxidation was increased by spreading the H2O2 and ferrous salt reagent over several fractions by 15% for two‐fractions and by 21% for three‐fractions. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
This paper reports an investigation of H2O2 electrogeneration in a flow electrochemical reactor with RVC cathode, and the optimization of the O2 reduction rate relative to cell potential. A study of the simultaneous oxidation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by the in situ electrogenerated H2O2 is also reported. Experiments were performed in 0.3 M K2SO4 at pH 10 and 2.5. Maximum hydrogen peroxide generation rate was reached at −1.6 V versus Pt for both acidic and alkaline solutions. Then, 100 mg L−1 of 2,4-D was added to the solution. 2,4-D, its aromatic intermediates such as chlorophenols, chlororesorcinol and chlorinated quinone, as well as TOC were removed at different rates depending on pH, the use of UV radiation and addition of Fe(II). The acidic medium favored the hydroxylation reaction, and first order apparent rate constants for TOC removal ranged from 10−5 to 10−4 s−1. In the presence of UV and iron, more than 90% of TOC was removed. This value indicates that some of the intermediates derived from 2,4-D decomposition remained in solution, mainly as more biodegradable light aliphatic compounds.  相似文献   

13.
The degradation of high concentrations of phenol (1g/dm?3) in aqueous media at high temperatures (100–190 °C) and pressures (2.0 MPa) has been studied by catalytic wet air oxidation in a trickle‐bed reactor. The effect of reaction temperature, weight hourly space velocity (WHSV) and hydrogen peroxide concentration on phenol concentration, total organic carbon (TOC) and chemical oxygen demand (COD) conversion by using a commercial copper catalyst has been investigated. At 150 °C, TOC removal increased by 28% with the WHSV of 62.5 h?1. The addition of hydrogen peroxide as a free radical promoter significantly enhanced the depletion rate of phenol. A kinetic study has been carried out leading to the determination of the kinetic constants for the removal of TOC. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
The aqueous solution properties of a nonionic silicone surfactant of dimethylpolysiloxane and its mixed surfactant systems were studied. It was found that the silicone surfactant has a high surface activity and forms micelles in two steps: premicelles in dilute concentrations and polymolecular micelles above 3.7 × 10−7 mol dm−3. In mixed systems of the silicone surfactant with anionic hydrocarbon or fluorocarbon surfactant, weak intermicellar interactions were found. They are due to electrostatic interaction between hydrophilic groups of the respective micelles. Dye solubilization measurements showed that the solubilized amount of Yellow-OB is greater than predicted by ideal systems. Hydrazo-azo tautomerism is observed in fluorocarbon-silicone surfactant systems, while Yellow-OB is solubilized only in the azo-form in the hydrocarbon-silicone surfactant system.  相似文献   

15.
A study of the effect of organic loading rate on the performance of anaerobic digestion of two‐phase olive mill solid residue (OMSR) was carried out in a laboratory‐scale completely stirred tank reactor. The reactor was operated at an influent substrate concentration of 162 g chemical oxygen demand (COD) dm?3. The organic loading rate (OLR) varied between 0.8 and 11.0 g COD dm?3 d?1. COD removal efficiency decreased from 97.0% to 82.6% when the OLR increased from 0.8 to 8.3 g COD dm?3 d?1. It was found that OLRs higher than 9.2 g COD dm?3 d?1 favoured process failure, decreasing pH, COD removal efficiency and methane production rates (QM). Empirical equations described the effect of OLR on the process stability and the effect of soluble organic matter concentration on the total volatile fatty acids (TVFA)/total alkalinity (TAlk) ratio (ρ). The results obtained demonstrated that rates of substrate uptake were correlated with concentration of biodegradable COD, through an equation of the Michaelis–Menten type. The kinetic equation obtained was used to simulate the anaerobic digestion process of this residue and to obtain the theoretical COD degradation rates in the reactor. The small deviations obtained (equal to or lower than 10%) between values calculated through the model and experimental values suggest that the proposed model predicts the behaviour of the reactor accurately. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
The degradation of black dye commercial product (BDCP) composed of C.I. Disperse Blue 373, C.I. Disperse Orange 37, C.I. Disperse Violet 93 dyes was investigated by photoelectrocatalysis process. The dyes have shown high mutagenic activity with Salmonella strain YG1041 and TA98 with and without S9. Samples of BCPD dye submitted to conventional chlorination and photoelectrocatalytic oxidation were compared monitoring its products by HPLC using a diode array detector, spectrophotometry UV–vis, TOC removal, and mutagenicity potency. The photoelectrocatalytic method operating with Ti/TiO2 as anode at +1.0 V and UV illumination presented fast oxidation of test solutions containing 10 mg L−1 of dye in 0.1 mol L−1 NaCl pH 4.0 leading to 100% of discoloration, 67% of mineralization, and negative response to all tested Salmonella strains. The formation of Cl, CL2 on photoelectrocatalytic medium improved the efficiency of the method in relation to conventional chlorination method that promoted 100% of discoloration, but only 8% of TOC removal and more mutagenic product.  相似文献   

17.
H. Byhlin 《Desalination》2003,151(1):21-31
Surfactants are present in almost all aqueous solutions — either as additives for different purposes, or because they occur naturally. Because of the common occurrence of surfactants in process water it is important to know how they behave in membrane processes. Ultrafiltration membranes allow almost complete passage of surfactant monomers, but reject micelles almost completely. Concentration polarisation during ultrafiltration of surfactant solutions is therefore mainly influenced by the presence of micelles. Operating parameters, e.g. the transmembrane pressure and the concentration of surfactant, as well as the pure water flux of the membrane, have a marked influence on the performance of hydrophilic membranes, as shown in this investigation. A distinct difference between the interaction of a non-ionic surfactant with hydrophilic and hydrophobic membranes was observed. The hydrophobic membrane showed a flux reduction already at concentrations below the critical micelle concentration (CMC), whereas no flux reduction was observed for a hydrophilic membrane with the same nominal molecular weight cut-off, below the CMC.  相似文献   

18.
This paper deals with the treatment of aqueous phenol solutions using an electrochemical technique. Phenol can be partly eliminated from aqueous solution by electrochemically initiated polymerisation. Galvanostatic electrolyses of phenol solutions at concentration up to 0.1 mol dm−3 were carried out on a Ta/PbO2 anode. The polymers formed are insoluble in acidic medium but soluble in alkaline. These polymers were filtered and then dissolved in aqueous solution of sodium hydroxide (1 mol dm−3). The polymers formed were quantified by total organic carbon (TOC) measurement. It was found that the conversion of phenol into polymers increases as a function of initial concentration, anodic current density, temperature, and solution pH. The percentage of phenol polymerised can reach 15%.  相似文献   

19.
Electrical conductivities of sodium perfluorooctanoate (SPFO) in aqueous solutions were measured at different temperatures (range 294–328 K). Critical micelle concentrations (CMC) and the degree of ionization (α) of the micelles were derived from such data. The results revealed that temperature dependence of CMC is U-shaped with a minimum at 316 K. Gibbs free energies, enthalpies, and entropies of micelle formation as a function of temperature were estimated from the CMC and α values using the charged pseudo-phase separation model. To correlate the enthalpic and entropic contributions, the compensation phenomenon was studied, with a compensation temperature of 309 K and an intercept of −27.7 kJ·mol−1. Apparent molar volumes and adiabatic compressibilities of SPFO were determined from density and ultrasound velocity measurements in the same temperature range as conductivities. Positive deviation from the Debye-Hückel limiting law of the apparent molar volume in the range of temperatures studied evidenced hydrogen bonding-type interactions between monomers and the existence of dimers in the premicellar region. With micellization, the apparent molar volumes decrease with rising temperature, indicating that the structure of micelles is looser than that of monomers. The isentropic apparent molar adiabatic compressibilities following micellization were positive, indicating the predominant role of the decrease in hydrophobic hydration in the association process.  相似文献   

20.
A simulated textile effluent (STE) was generated for use in laboratory biotreatment studies; this effluent contained one reactive azo dye, PROCION Red H‐E7B (1.5 g dm−3); sizing agent, Tissalys 150 (1.9 g dm−3); sodium chloride (1.5 g dm−3) and acetic acid (0.53 g dm−3) together with nutrients and trace elements, giving a mean COD of 3480 mg dm−3. An inclined tubular anaerobic digester (ITD) was operated for 9 months on the STE and a UASB reactor for 3 months. For a 57 day period anaerobic effluent from two reactors, a UASB and an ITD, was mixed and treated in an aerobic stage. In days 77–247 68% of the true colour of PROCION Red H‐E7B was removed by anaerobic treatment with no colour removal aerobically and up to 37% COD was removed anaerobically, with a corresponding BOD removal of 71%. For combined anaerobic and aerobic treatment a mean COD removal of 57% and BOD removal of 86% was achieved. Operation of the ITD at a 2.8 day HRT (volumetric loading rate (B v) 1.24 g COD dm−3day−1) and the UASB at a 2 day HRT (B v 1.74 g COD dm−3day−1) gave comparable COD removals but the UASB gave better true colour removal. Effluent from the combined process operating on this simulated waste still contained an average 1500 mg COD dm−3, and further treatment would be required to meet consent standards. © 1999 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号