首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical electron microscopy has been used to study the precipitation reactions in sintered samples of 9 mol% La2O3-Y2O3 samples upquenched from the single phase cubic region into the cubic and hexagonal phase field. Samples annealed just inside the two-phase cubic-cubic and hexagonal solvus exhibited predominantly grain boundary precipitation. Small La2O3 rich second phases formed within the first ten minutes and developed into strained, facetted precipitates after 300 min. Intergranular and intragranular precipitation occurred in samples annealed further into the two-phase field. Strained, lathlike La2O3-rich monoclinic precipitates, exhibiting a preferrred orientation in the matrix, appeared as the dominant morphology for long times at temperature. Chemical microanalyses of the strained structures obtained in samples annealed for 300 min revealed La2O3 matrix concentrations in agreement with phase diagram predictions. However, the La2O3 concentrations in the second-phase precipitates were found to be far in excess of the cubic and hexagonal-hexagonal solvus. This discrepancy is believed to arise from a re-equilibration of the second phase in the cubic and monoclinic phase field during quenching.  相似文献   

2.
Al2O3 is a popular ceramic and has been used widely in many applications and studied in many aspects. On the other hand, zirconia-toughened alumina (ZTA) is a desirable material for engineering ceramics because of its high hardness, high wear resistance and high toughness. In the present research, Al2O3-Cr2O3-ZrO2 composites were produced by hot-pressing in order to harden the Al2O3 matrix in ZTA. Its microstructure and mechanical properties were studied by SEM, ESCA, XRD, Vickers hardness and bending strength test. It was found that addition of ZrO2 inhibited the grain growth of Al2O3-Cr2O3 and the grain growth of ZrO2 proceeded with increasing amounts of ZrO2 in the Al2O3-Cr2O3-Zr2 composite. The formation of solid solution Al2O3-Cr2O3 was also confirmed by XRD, and monoclinic ZrO2 increased on addition of Cr2O3. Maximum hardness was at Al2O3-10wt% Cr2O3 with 10 vol% ZrO2 and a stress-induced transformation was confirmed on the fracture surface of the specimen after the bending test.  相似文献   

3.
Fe2O3 powders with different crystallite sizes prepared by heating FeOOH at various temperatures were ground with La2O3 powder using a planetary ball mill to investigate the effect of crystallite size on mechanochemical synthesis of LaFeO3. Fe2O3 powder with smaller crystallite size obtained by heating at lower temperature reacts more easily with La2O3 than that with larger size. The mechanochemical reaction proceeds with an increase in grinding time. Specific surface area of the LaFeO3 powder synthesized has a large value of over 11 m2/g. The mechanochemical process can be also applied to synthesize other iron complex oxides with rare earth elements such as Pr, Nd and Sm.  相似文献   

4.
The surface tensions of xPbO-(100?x) B2O3 (x = 30–80 mol%) and xBi2O3-(100?x) B2O3 (x = 0–100 mol%) melts were measured using the ring method over the temperature range 973 to 1373 K. The compositional and temperature dependences of surface tension were investigated. Addition of PbO and Bi2O3 to B2O3 increased the surface tensions of their respective PbO-B2O3 and Bi2O3-B2O3 melts. The surface tension showed a maximum at 60 mol% PbO in the PbO-B2O3 melts and at 70–80 mol% Bi2O3 in the Bi2O3-B2O3 melts. The temperature coefficient of surface tension was examined on the basis of its relationship to the structure, and it was suggested that the temperature coefficient of surface tension decreases with an increasing content of four-coordinated boron.  相似文献   

5.
The phase structure of nanostructured Y2O3 (n-Y2O3) at low temperature was studied by x-ray diffraction profile refinement (XRDPR) method. All maximum X-ray diffraction peaks of Y2O3 were observed. The results show that the sample compacted at room temperature consists of two monoclinic phases B1 and B2 and a cubic phase. The samples sintered at 300°C and at 600°C for 5 hours, respectively, are also composed of monoclinic B1, B2 and cubic phases.The results show that with increasing temperature, grain growth, migration of grain boundary and phase transformation occur. This paper presents some quantitative information.  相似文献   

6.
Al2O3 and Al2O3/ZrO2 composites have been fabricated by slip casting from aqueous suspensions. The physical and structural characteristics of the starting powders, composition of the suspensions, casting behaviour, microstructure of the green and fired bodies and the mechanical properties of the products were investigated. The addition of ZrO2 to Al2O3 leads to a significant increase in fracture toughness when ZrO2 particles are retained in the tetragonal form (transformation-toughening mechanism) but when microcracking (due to the spontaneous transformation of ZrO2 from the tetragonal phase to the monoclinic one) is dominant, an excellent toughness value is accompanied by a drastic drop in strength and hardness.  相似文献   

7.
The structural and microstructural properties (crystalline system at the beginning of crystallization, lattice disorder and crystallite size) of metastable zirconia have been studied by an X-ray line broadening analysis using simplified methods based on suitably assumed functions describing the diffraction profiles. Metastable tetragonal zirconia has been crystallized at 970, 1000 and 1050° C, respectively, starting from an Al2O3-ZrO2-SiO2Na2O glassy system with a chemical composition very close to that of well known electromelted refractory materials. In the present work we have definitely shown the presence, inside the crystallized zirconia phase, of internal microstrains having values ranging approximately between 2 and 4×10–3. Moreover, we have confirmed the peculiar smallness in size of precipitated zirconia crystallites ( 200 Å). Therefore, in the present system, the stabilization of the tetragonal form of ZrO2 with respect to the stable monoclinic one can be explained in terms of a contribution to the amount of free energy due to strain energy, in addition to the previously hypothesized surface energy. The observed strong line broadening for some samples treated at lower temperatures (970 and 1000° C) gives rise to an apparent cubic lattice pattern; but the asymmetry of each apparent single line masks unequivocally a tetragonal doublet. This latter conclusion disagrees with some hypotheses on the existence of a cubic metastable form of ZrO2 which could originate at the beginning of zirconia crystallization.  相似文献   

8.
Phase relationships in the system Si3N4-SiO2-La2O3   总被引:1,自引:0,他引:1  
Phase relationships in the system Si3N4-SiO2-La2O3 have been investigated after cooling from 1700° C. Two phases, 2Si3N4·La2O3 (monoclinic) and La5 (SiO4)3N (hexagonal), were identified; the other two phases in the system, LaSiO2N (monoclinic) and La4Si2O7N2 (monoclinic), were found to dissociate to La5 (SiO4)3N and a glass after cooling from temperatures above 1650° C. The unit cells of 2Si3N4·La2O3, LaSiO2N and La4Si2O7N2 have been determined and compared with those of preceding works. The results are discussed in relation to the intergranular phases observed when Si3N4 is sintered with La2O3 additions.  相似文献   

9.
The (metastable) tetragonal phase in 3–4 mol% Y2O3-ZrO2 alloys undergoes a transition to the monoclinic form in the 200–300 °C temperature range. Microcracking due to the volume change at this transition has been detected in these compositions by sharp acoustic emission during heating. The phase change was confirmed by X-ray diffraction, dilatometry and scanning electron microscopy. The monoclinic tetragonal transition in ZrO2-1 mol% Y2O3 alloy at 850–750 °C and the same phase change in 2, 3, 4 and 6 mol% Y2O3 compositions at the eutectoid temperature of about 560 °C was also clearly signalled by the acoustic emission counts during heating and cooling. There was no significant acoustic emission activity on heating and cooling the 9 and 12 mol% Y2O3 compositions, which are cubic. The acoustic emission data thus confirm the phase relations in the 1–12 mol% Y2O3 region, established by conventional methods such as differential thermal analysis, dilatometry and X-ray diffraction.  相似文献   

10.
Undoped and Nd- or Yb-doped laser-grade yttrium aluminum garnet and (Y,La)2O3 ceramics with a transmittance above 80% in the 1-μm lasing region have been prepared by solid-state reactions using nonagglomerated Y2O3 and Al2O3 nanopowders. The Y2O3 nanopowders were prepared via laser evaporation, chemical precipitation from urea solutions, and grinding of commercially available Y2O3 in a purposedesigned laboratory-scale attritor at stirrer rotation rates of up to 1500 rpm. The YAG ceramics were prepared using commercially available Al2O3. After grinding, all of the powders had a particle size on the order of a hundred nanometers. Green compacts produced from the nanopowders were sintered in a vacuum furnace between 1615 and 1750°C to give highly transparent ceramic samples.  相似文献   

11.
ZrO2-Y2O3 ceramics with varying Bi2O3 contents were prepared and their microstructures and electrical conductivities investigated. The phase stability of cubic fluorite zirconia was disturbed by the introduction of Bi2O3 and tetragonal or monoclinic second phases appeared. The effect of the second phases on the intragrain and the grain boundary conductivities was investigated in the 300–550 C range using complex plane analysis in the frequency range of 5 Hz to 13 MHz. It showed that conductivity data could readily be interpreted in terms of possible physical models and electrical equivalent circuits. Tetragonal phases had a small positive influence on the intragrain conductivity. The grain 9boundary resistivity could be diminished by discrete monoclinic second phases which offered more conductive intergranular contacts.  相似文献   

12.
Cubic and/or monoclinic Y2O3:Eu3+ nanoparticles (10–50 nm) were made continuously without post-processing by single-step, flame spray pyrolysis (FSP). These particles were characterized by X-ray diffraction, nitrogen adsorption and transmission electron microscopy. Photoluminescence (PL) emission and time-resolved PL intensity decay were measured from these powders. The influence of particle size on PL was examined by annealing (at 700–1300°C for 10 h) as-prepared, initially monoclinic Y2O3:Eu3+ nanoparticles resulting in larger 0.025–1 μm, cubic Y2O3:Eu3+. The influence of europium (Eu3+) content (1–10 wt%) on sintering dynamics as well as optical properties of the resulting powders was investigated. Longer high-temperature particle residence time during FSP resulted in cubic nanoparticles with lower maximum PL intensity than measured by commercial micron-sized bulk Y2O3:Eu3+ phosphor powder. After annealing as-prepared 5 wt% Eu-doped Y2O3 particles at 900, 1100 and 1300°C for 10 h, the PL intensity increased as particle size increased and finally (at 1300°C) showed similar PL intensity as that of commercially available, bulk Y2O3:Eu3+ (5 μm particle size). Eu doping stabilized the monoclinic Y2O3 and shifted the monoclinic to cubic transition towards higher temperatures.  相似文献   

13.
Mechanical properties of sinter-forged Al2O3-ZrO2 ceramics   总被引:1,自引:0,他引:1  
Two kinds of composites, Al2O3-25 wt% ZrO2(2 mol% Y2O3) (Y-ZTA), Al2O3-25 wt% ZrO2(8 mol% CeO2) (Ce-ZTA) were produced by the sinter-forging process. The effect of presintering temperature on the mechanical properties of the composites was examined. The sinter-forging process increased the room-temperature bending strength in comparison with pressureless sintering, owing to the smaller grain size in sinter-forged bodies than in pressureless sintered ones. It was found necessary to keep the presintering temperature considerably lower than sinter-forging temperature in order to improve the room-temperature strength. The strength of sinter-forged Ce-ZTA was higher than that of sinter-forged Y-ZTA. The residual surface compressive stress induced by the phase transition during grinding in Ce-ZTA was found to be effective to further improve the strength and fracture toughness.  相似文献   

14.
The thermal dehydration and transformations of the cyclohexaphosphates Nd2P6O18 · 12H2O and Li3Nd3(P6O18)2 · 26H2O are investigated in the range 20–1000°C using differential thermal analysis and high-temperature x-ray diffraction, in conjunction with chromatographic determination of the anion composition of reaction products. The results demonstrate that, during heating, the cyclohexaphosphates convert into the polyphosphates Nd(PO3)3 (monoclinic and orthorhombic forms) and LiNd(PO3)4 (monoclinic form). These processes are not accompanied by P2O5 removal. The temperature stability limits of the polyphosphates are determined, and the possible mechanisms of the cyclohexaphosphate–polyphosphate transformations are discussed.  相似文献   

15.
In situ formation of Al2O3–ZrO2–Y2O3 composite ceramic coating on ZAlSi12Cu3Ni2 aluminum alloy was successfully prepared by plasma electrolytic oxidation (PEO) technology in a zirconate electrolytic solution. The morphologies, phase components, the thermal diffusion coefficient and thermal conductivity of the composite coatings were investigated by scanning electron microscope, energy dispersive spectroscopy, X-ray diffraction and laser pulse tester. The results indicate that the composite coatings are relatively dense and uniform in thickness, and predominantly composed of Al2O3, c-Y0.15Zr0·85O1·93Vo0·07(Vo-oxygen vacancies), monoclinic ZrO2 (m-ZrO2) and littleY2O3. The composite coatings exhibit a gradient distribution in phase component from the surface to the inner part. With the increase of the applied voltage, the micropores, the discharges products, thickness and the ZrO2 content of the composite coatings increase. With the oxidation time increasing, the surface of coating generates oxide ceramic particles around the holes and accumulates repeatedly. The content of zirconium is the higher on the surface and interface. The content of Al is less and it shows that the ceramic coating contains mainly the zirconium oxide. This is attributed to the presence of micropores and microcracks, plus the extremely fine grain size and the presence of an amorphous phase. When considered in conjunction with the possible thickness range, it’s clear that this PEO coatings offer considerable promise as thermal barriers.  相似文献   

16.
The transformation of near-surface material on grinding and polishing has been investigated in sintered zirconia of 1 μm grain size and 99 % density containing 4.5 and 7.0 mol % Y2O3. Rough wet and dry grinding transformed ca 20 % cubic phase into 18 % tetragonal and 2 % monoclinic in material initially 47 % cubic and 53 % tetragonal (4.5 mol % Y2O3) but no change of phase in material that was fully cubic (7.0 mol % Y2O3). Annealing and polishing reduced lattice strain but only polishing reduced the concentration of monoclinic and tetragonal phases. Microhardness studies indicated that lattice strain and the phase transformations increased the penetration hardness to a depth of ca 4 μm.  相似文献   

17.
Three kinds of Al2O3 powders, i.e. two kinds of low-soda Al2O3 with average particle sizes of 3.9 and 0.6 m and an electrofused Al2O3 with an average particle size of 21.8 m, were ground for up to 300 h in a dry vibration ball mill. Variations in particle-size distribution, specific surface area, crystallite size, lattice strain, effective temperature factor and lattice constant were examined against milling time. The mechanism of grinding was found to differ between low-soda Al2O3 and electrofused Al2O3. The mechanochemical effects on these Al2O3 powders occurred in the order decrease of crystallite size increase of effective temperature factor increase of lattice strain. The length of the a-axis was clearly increased by a prolonged grinding. The difference in the ground state of three specimens was attributed to differences in the physical state of particles originating from the preparation methods, and also to particle size.  相似文献   

18.
The system Fe2O3-In2O3 was studied using X-ray diffraction,57Fe Mössbauer spectroscopy and infrared spectroscopy. The samples were prepared by chemical coprecipitation and thermal treatment of the hydroxide coprecipitates. For samples heated at 600 °C, a phase, α- (Fe1?x In x )2O3, isostructural with α-Fe2O3, exists for 0?x?0.8, and a phase C-(Fe1?x In x )2O3, isostructural with cubic In2O3, exists for 0.3?x?/1. In the two-phase region these two phases are poorly crystallized. An amorphous phase is also observed for 0.3?x?0.7. For samples heated at 900 °C the two-phase region is wider and exists for 0.1?x?0.8 with the two phases well crystallized. In these samples an amorphous phase is not observed.57Fe Mössbauer spectroscopy of samples prepared at 600 °C indicated a general tendency of the broadening of spectral lines and the decrease of numerical values of the hyperfine magnetic field (HMF) with increasing molar fraction In2O3 in the system Fe2O3-In2O3. The samples prepared at 900 °C, in the two-phase region, are characterized by a constant HMF value of 510 kOe at room temperature. Infrared spectroscopy was also used to follow the changes in the infrared spectra of the system Fe2O3-In2O3 with gradual increase of molar fraction of In2O3. A correlation between X-ray diffraction, Mössbauer spectroscopic and infrared spectroscopic results was obtained.  相似文献   

19.
The liquidus surface in the HfO2-Y2O3-La2O3 system was studied by differential thermal analysis in helium at temperatures of up to 2500°C, derivative thermal analysis in air at temperatures of up to 3000°C, x-ray diffraction, optical microscopy, and electron microscopy. The liquidus surface was found to comprise five primary crystallization fields-those of theH-Y2O3-,C-Y2O3-,F-HfO2-, andX-La2O3-based solid solutions and the pyrochlore phase La2Hf2O7. Three invariant equilibria were identified in the system studied-two peritectics and one eutectic.  相似文献   

20.
Stability relationships of the four polymorphs of bismuth oxide have been determined by means of DTA and high-temperature x-ray studies. The stable low-temperature monoclinic form transforms to the stable cubic form at 730 ±5 °C, which then melts at 825 ± 5 °C. By controlled cooling, the metastable tetragonal phase and/or the metastable body-centered cubic (b.c.c.) phase appear at about 645 °C. Whereas b.c.c. can be preserved to room temperature, tetragonal will transform to monoclinic between 550 and 500 °C. Tetragonal Bi2O3, however, is easily prepared by decomposing bismutite (Bi2O3·CO2) at 400 °C for several hours. The greatest transition expansion occurs at the monoclinic to cubic inversion, and cubic Bi2O3 shows the greatest coefficient of volume expansion. With exposure to air, Bi2O3 carbonates and partially transforms to bismutite and an unknown phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号