首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We constructed an extreme ultraviolet microscopy (EUVM) system for actinic mask inspection that consists of Schwarzschild optics and an X-ray zooming tube. This system was used to inspect finished extreme ultraviolet lithography (EUVL) masks and Mo/Si glass substrates. A clear EUVM image of a 300-nm-wide pattern on a 6025 glass mask was obtained. The resolution was estimated to be 50 nm or less from this pattern. Programmed phase defects on the glass substrate were also used for inspection. The EUV microscope was able to resolve a programmed pit defect with a width of 40 nm and a depth of 10 nm and also one with a width of 70 nm and a depth of 2 nm. However, a 75-nm-wide 1.5-nm-deep pit defect was not resolved. Thus, in this study, one critical dimension of a pit defect was estimated to be a depth of 2 nm.  相似文献   

2.
There is an urgent demand for higher performance resists with superior resolution, sensitivity, and line edge roughness for both electron-beam and extreme ultraviolet lithography applications. Chemically amplified resists provide superior sensitivity compared to non-chemically amplified resists, but often suffer from resolution limitations and poor line edge roughness. A new class of negative tone chemically amplified molecular resists has been developed based on epoxide cross-linking that combines high sensitivity with low line edge roughness and excellent resolution. The most recent compound of this class (2-Ep) simultaneously demonstrates resolution of 25 nm half-pitch, sensitivity of 38 μC/cm2, and line edge roughness (3σ) of 2.9 nm under 100 keV e-beam exposure.  相似文献   

3.
We report a study on the fabrication and characterization of ultraviolet photodetectors based on N-doped ZnO films. Highly oriented N-doped ZnO films with 10 at.% N doping are deposited using spray pyrolysis technique onto glass substrates. The photoconductive UV detector based on N-doped ZnO thin films, having a metal–semiconductor–metal (MSM) configuration are fabricated by using Al as a contact metal. IV characteristic under dark and UV illumination, spectral and transient response of ZnO and N-doped ZnO photodetector are studied. The photocurrent increases linearly with incident power density by more than two orders of magnitude. The photoresponsivity (580 A/W at 365 nm with 5 V bias, light power density 2 μW/cm2) is much higher in the ultraviolet region than in the visible.  相似文献   

4.
Undoped and Ag-doped NaTaO3 materials were synthesized via a sol–gel method using sodium hydroxide, tantalum (V) ethoxide, and silver nitrate as precursors. Both samples were thermally treated at 600 °C, for 6 h. Powder X-ray diffraction (XRD), ultraviolet (UV) diffuse spectra, scanning electron microscopy (SEM/EDX), BET (Brunauer, Teller) surface area, and electrical measurements are used to characterize various properties of the obtained materials. The average crystallite size was 50.2 nm for undoped NaTaO3 and 37.2 nm for Ag-doped NaTaO3. Electrical measurements have confirmed a typical semiconductor behavior of the obtained materials, with electrical band gap about 0.82 eV for undoped sample and 1.04 eV for Ag-doped sample.  相似文献   

5.
Efficiently combining active and passive elements in integrated optics is a key ingredient for their successful employment. Here, we present the fabrication of an optimized PMMA substrate structure for improved coupling of laser light generated by organic semiconductor distributed feedback lasers into single-mode deep ultraviolet induced waveguides. For production, electron beam lithography on an oxidized silicon wafer and subsequent reactive ion etching is used to form the feedback grating of the laser. Afterwards, an aligned second electron beam lithography step on top of the grating allows the fabrication of a topographical step of 1.67 μm on the edges of the grating area. Metal is evaporated on this resulting master structure serving as a plating base for electroforming of a Ni tool. The tool is then used for hot embossing of the structure into PMMA bulk material. On a length of 500 μm the imprinted grating lines, having a period of 200 nm, are 100 nm wide and 60 nm high. Aligned deep ultraviolet exposure to induce a passive single- or multi-mode waveguide and co-evaporation of the active material Alq3:DCM finish the coupling region. This structure optimizes the coupling of laser light generated in the laser structure into the passive waveguide. In combination with microfluidic channels, the laser light can be considered for sensing applications on a PMMA lab-on-chip system.  相似文献   

6.
InAlN films of different thicknesses (150 nm, 250 nm, 380 nm, 750 nm and 1050 nm) were grown on Si (111) by means of reactive co-sputtering at 300 °C. Surface morphology results indicated an increase in the grains size and their spacing with increase of the film thickness. The surface of InAlN remained smooth with a slight variation in its RMS roughness from 1.29 nm to 6.62 nm by varying the film thickness. X-ray diffraction patterns exhibited InAlN diffraction peaks with preferred orientation along (002) plane in the thickness range 250 nm to 750 nm, however, the preferred orientation of the film was changed towards (101) plane at 1050 nm. An improvement in the crystallinity of InAlN was observed with increase of the film thickness. Electrical characterization revealed a decrease in the film's resistivity by increasing its thickness to 750 nm, however, the resistivity was found to increase at 1050 nm. The electron concentration indicated an increasing trend whereas changes in the electron mobility were found to be inconsistent with increase of the film thickness.  相似文献   

7.
In order to investigate charge trap characteristics with various thicknesses of blocking and tunnel oxide for application to non-volatile memory devices, we fabricated 5 and 15 nm Al2O3/5 nm La2O3/5 nm Al2O3 and 15 nm Al2O3/5 nm La2O3/5, 7.5, and 10 nm Al2O3 multi-stack films, respectively. The optimized structure was 15 nm Al2O3 blocking oxide/5 nm La2O3 trap layer/5 nm Al2O3 tunnel oxide film. The maximum memory window of this film of about 1.12 V was observed at 11 V for 10 ms in program mode and at ?13 V for 100 ms in erase mode. At these program/erase conditions, the threshold voltage of the 15 nm Al2O3/5 nm La2O3/5 nm Al2O3 film did not change for up to about 104 cycles. Although the value of the memory window in this structure was not large, it is thought that a memory window of 1.12 V is acceptable in the flash memory devices due to a recently improved sense amplifier.  相似文献   

8.
《Microelectronic Engineering》2007,84(5-8):1084-1087
We have designed and synthesized a molecular resist material, which has no distribution of the protecting groups and have evaluated its performance as a molecular resist with EB and EUV exposure tool. The molecular resist attained a resolution of sub-45 nm patterning at an exposure dose of 12 mJ/cm2. It was found that controlling the distribution of the protecting groups in a molecular resist material has a great impact on improving line edge roughness (LER). Low LER values of 3.1 nm (inspection length: L = 620 nm) and 3.6 nm (L = 2000 nm) were achieved with this molecular resist using Extreme UltraViolet (EUV) lithography tool.  相似文献   

9.
Laser stimulation with 1300 nm as thermal (TLS) and with 1064 nm as photoelectric (PLS) laser stimulation techniques are now widely used in failure analysis of Integrated Circuits. The stimulation signatures when using a 1064 nm laser are often a combination of PLS and TLS along with laser induced impact ionization. The results show the existence of laser induce impact ionization current component when high laser power is applied. This work presents a quantitative investigation of 1064 nm laser stimulation effects on single NMOSFET devices. For high laser power applications the impact ionization current becomes the dominant component for 1064 nm laser stimulation.  相似文献   

10.
A novel tripodal compound, tris[2-(7-diethylamino-coumarin-3-carboxamide)ethyl]amine (tren-C), and a model compound, N-butyl-7-(diethylamino)-coumarin-3-carboxamide, were synthesized and characterized by elemental analysis, infrared and 1H NMR spectra. The structure of the model compound was characterized by single crystal X-ray crystallography. The electroluminescence devices of ITO/2-TNATA (5 nm)/NPB (40 nm)/CBP: tren-C or model compound (wt%, 30 nm)/Bu-PBD (30 nm)/LiF (1 nm)/Al (100 nm) were fabricated and characterized. The EL spectra of the devices comprising vacuum vapour-deposited films using tren-C as a dopant are similar to the PL spectrum of tren-C in chloroform solutions. At the concentration of 0.5 wt% tren-C, a blue-emitting OLED with an emission peak at 464 nm, a maximum external quantum efficiency (EQE) of 1.39% and a maximum luminous efficiency of 2 cd/A at the current density of 20 mA/cm2, and a maximum luminance of 1450 cd/m2 at 12 V are achieved.  相似文献   

11.
《Microelectronic Engineering》2007,84(5-8):822-824
Hydrogen silsesquioxane (HSQ) is a high-resolution negative-tone inorganic resist with an established resolution below 10 nm. Using 100 keV electron beam lithography, we report the achievement of isolated 6 nm wide lines in 20 nm thick HSQ layers on silicon substrates. We also achieved 10 nm lines and spaces in a 10 nm HSQ layer. This is the smallest pitch (20 nm) achieved to date using HSQ resist. Experiments in order to investigate the effect of KOH based developer on ultimate resolution have been also performed and resulted in 7 nm wide lines. These results, in combination with the good etching resistance of HSQ, prove the versatility of HSQ for nanolithography.  相似文献   

12.
《Optical Fiber Technology》2013,19(4):304-308
We propose a wavelength-tunable thulium-doped single mode fiber laser with a digitally controlled micro-mirror array device. The fast and flexible lasing wavelength switching property was achieved by the pixelated spatial modulation of the micro-mirror array. The proposed laser provides a maximum output power of 160 mW with 24% slope efficiency and a narrow output linewidth of less than 0.03 nm. The operating wavelength is continuously tunable from 1863 nm to 1937 nm with a wavelength selectivity accuracy of less than 0.4 nm and a fast switching time of ∼75 μs.  相似文献   

13.
《Organic Electronics》2008,9(6):1101-1106
We report on mobilities up to 3.6 cm2/V s in organic field-effect transistors (OFETs) with solution-processed dithiophene- and dibenzo-tetrathiafulvalene (DT- and DB-TTF) single crystals as active materials. In the devices, the channel length varies from 100 μm down to sub 100 nm, and the SiO2 thickness is either 100 nm, 50 nm, or 20 nm. The devices exhibit excellent operation characteristics with an on/off-ratio exceeding 106. Temperature dependent measurements between 50 and 400 K reveal a thermally activated transport with increased activation above 200 K. The mobility exhibits exponential activation with two distinct exponents.  相似文献   

14.
This paper presents a comparative study among different biasing circuits of inductorless low-area Low Noise Amplifier (LNAs) with feedback. This study intends to determine the most suitable biasing circuit to achieve the best LNA performance for wideband applications. The main performance metrics are analyzed and a comparison is carried out based on electrical simulations. To this purpose, two different CMOS technology processes are considered: 130 nm and 90 nm. In both cases, the supply voltage is 1.2 V. The best LNA designed in 130 nm achieves a bandwidth of 2.94 GHz with a flat voltage gain (Av) of 16.5 dB and a power consumption of 3.2 mW. The same LNA topology designed in 90 nm technology has a bandwidth of 11.2 GHz, featuring a voltage gain of 16.6 dB and consuming 1.9 mW. Both LNAs are input-impedance matched and have a noise figure below 2.4 dB measured at 2.4 GHz. As a case study, the layout of the best-performance LNA circuit has been implemented in a 130 nm technology, achieving an area of 0.012 mm2, which is near the size of a pad or an inductor. It is demonstrated that the bandwidth of this circuit can be notably increased by simply adding a small inductance in the feedback path.1  相似文献   

15.
In this work, we demonstrate the fabrication of silicon nanowires down to 22 nm wide using trilayer nanoimprint lithography and wet etching. Using the same template prepared by E-beam lithography (EBL), nanowires with top width of 22 nm and 75 nm are fabricated on boron-doped top silicon layer of SOI substrate. The two samples are tested in 250 ppm NO2 ambient for gas detection. The 22 nm wide one shows a much higher relative sensitivity than the 75 nm wide one. The simulation which calculates the carrier density by solving Poisson equation was carried out and the results well explain the sensitivity disparity between the two samples.  相似文献   

16.
A triarylamine-containing fluorene derivative (FP) with wide bandgap and excellent thermal stability was synthesized and used as electron donor to construct planar heterojunction organic ultraviolet sensor (UVS), while bis(4-(4,6-diphenyl-1,3,5-triazine-2-yl)phenyl)diphenylsilane (NSN) was used as electron acceptor. The UVS ITO/PEDOT:PSS/FP/NSN/LiF/Al showed sensitive visible-blind response to UV illumination from both ITO and cathode sides. When no bias applied, the peak responsivity to UV light through ITO and cathode side was 47 and 33 mA/W, respectively. To the irradiation from the semitransparent Al side, the most sensitive response range covers the UVB region. Under a bias of ?4 V, the peak responsivity at 300 nm reaches 473 mA/W.  相似文献   

17.
We have investigated Ag(200 nm)/AgAl(100 nm) ohmic contacts to p-type GaN for near-UV (405 nm) flip-chip light-emitting diodes (LEDs). It is shown that the use of an AgAl alloy capping layer (with 8 at% Al) results in better electrical and optical properties as compared to single Ag contacts when annealed at 430 °C. For example, Ag/AgAl (8 at% Al) contacts give specific contact resistance of 4.6×10–4 Ω cm2 and reflectance of 90% at a wavelength of 405 nm. However, use of an AgAl (with 50 at% Al) layer is not effective. LEDs fabricated with the Ag/AgAl (8 at% Al) reflectors produce higher light output as compared with the ones with single Ag reflectors. Ohmic mechanisms of the Ag/AgAl (8 at% Al) contacts are described and discussed.  相似文献   

18.
The effect of annealing temperature on photoluminescence (PL) of ZnO–SiO2 nanocomposite was investigated. The ZnO–SiO2 nanocomposite was annealed at different temperatures from 600 °C to 1000 °C with a step of 100 °C. High Resolution Transmission Electron Microscope (HR-TEM) pictures showed ZnO nanoparticles of 5 nm are capped with amorphous SiO2 matrix. Field Emission Scanning Electron Microscope (FE-SEM) pictures showed that samples exhibit spherical morphology up to 800 °C and dumbbell morphology above 800 °C. The absorption spectrum of ZnO–SiO2 nanocomposite suffers a blue-shift from 369 nm to 365 nm with increase of temperature from 800 °C to 1000 °C. The PL spectrum of ZnO–SiO2 nanocomposite exhibited an UV emission positioned at 396 nm. The UV emission intensity increased as the temperature increased from 600 °C to 700 °C and then decreased for samples annealed at and above 800°C. The XRD results showed that formation of willemite phase starts at 800 °C and pure willemite phase formed at 1000 °C. The decrease of the intensity of 396 nm emission peak at 900 °C and 1000 °C is due to the collapse of the ZnO hexagonal structure. This is due to the dominant diffusion of Zn into SiO2 at these temperatures. At 1000 °C, an emission peak at 388 nm is observed in addition to UV emission of ZnO at 396 nm and is believed to be originated from the willemite.  相似文献   

19.
《Optical Fiber Technology》2014,20(5):473-477
We proposed a novel photonic quasi-crystal fiber with near-zero flattened dispersion, highly nonlinear coefficient, and low confinement loss by using the dual concentric core structure. By optimizing the structure parameter, the proposed photonic quasi-crystal fiber can achieve a nonlinear coefficient larger than 33 W−1 km−1 and near-zero flatten dispersion of 0 ± 3.4 ps/nm/km with a near-zero dispersion slope of 8.5 × 10−3 ps/nm2/km at the wavelength of 1550 nm. Near-zero flattened dispersion and low confinement loss in the ultralow order of 10−7 dB/m are simultaneously obtained in the wavelength range from 1373 to 1627 nm. Furthermore, two zero dispersion wavelengths can be achieved in a wide wavelength ranger from 1373 to 1725 nm. From the point of view of practical fabrication, the influence of deviation of each air hole diameter within 3% of imperfections on dispersion, nonlinearity, and is discussed to verify the robustness of our design.  相似文献   

20.
《Organic Electronics》2008,9(2):241-252
The four fluorene-based trimers with various aromatic and alkyl substituents (T1T4) are synthesized and characterized. These oligomers show the similar electronic absorption and emission characteristics (e.g., absorption peak at 351 nm, and highly efficient deep blue emission at 394 nm in solution), indicating that the major electronic properties of the core chromophore are essentially independent of the substituents. However, the condensed state structures and thermal properties of four trimers are found to be different from each other, from crystalline (full alkyl (T1) or full aromatic (T2) substituted trimers) to amorphous (mixed aromatic and alkyl (T4) substituted trimers). The effect of different condensed state structures on electroluminescence device properties is presented: The blue light-emitting devices with accordant structure of ITO/PEDOT:PSS/TCTA (40 nm)/trimers (40 nm)/BCP (10 nm)/Alq3 (20 nm)/LiF/Al exhibit different EL efficiency (2.9% of T2, 1.8% of T3 and 2.7% of T4). Using amorphous T4, the white light-emitting device of ITO/TCTA (40 nm)/rubrene (0.1 nm)/T4 (8 nm)/Alq3(52 nm)/LiF/Al is fabricated with high efficiency (6.15 cd A−1), high brightness (9500 cd m−2) and good white light CIE coordinates (0.32, 0.37).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号