首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Drought is one of major abiotic stresses constraining crop productivity worldwide. To adapt to drought stress, plants have evolved sophisticated defence mechanisms. Wild barley germplasm is a treasure trove of useful genes and offers rich sources of genetic variation for crop improvement. In this study, a proteome analysis was performed to identify the genetic resources and to understand the mechanisms of drought tolerance in plants that could result in high levels of tolerance to drought stress.

Results

A greenhouse pot experiment was performed to compare proteomic characteristics of two contrasting Tibetan wild barley genotypes (drought-tolerant XZ5 and drought-sensitive XZ54) and cv. ZAU3, in response to drought stress at soil moisture content 10 % (SMC10) and 4 % (SMC4) and subsequently 2 days (R1) and 5 days (R2) of recovery. More than 1700 protein spots were identified that are involved in each gel, wherein 132, 92, 86, 242 spots in XZ5 and 261, 137, 156, 187 in XZ54 from SMC10, SMC4, R1 and R2 samples were differentially expressed by drought over the control, respectively. Thirty-eight drought-tolerance-associated proteins were identified using mass spectrometry and data bank analysis. These proteins were categorized mainly into photosynthesis, stress response, metabolic process, energy and amino-acid biosynthesis. Among them, 6 protein spots were exclusively expressed or up-regulated under drought stress in XZ5 but not in XZ54, including melanoma-associated antigen p97, type I chlorophyll a/b-binding protein b, glutathione S-transferase 1, ribulosebisphosphate carboxylase large chain. Moreover, type I chlorophyll a/b-binding protein b was specifically expressed in XZ5 (Spots A4, B1 and C3) but not in both of XZ54 and ZAU3. These proteins may play crucial roles in drought-tolerance in XZ5. Coding Sequences (CDS) of rbcL and Trx-M genes from XZ5, XZ54 and ZAU3 were cloned and sequenced. CDS length of rbcL and Trx-M was 1401 bp (the partial-length CDS region) and 528 bp (full-length CDS region), respectively, encoding 467 and 176 amino acids. Comparison of gene sequences among XZ5, XZ54 and ZAU3 revealed 5 and 2 SNPs for rbcL and Trx-M, respectively, with two 2 SNPs of missense mutation in the both genes.

Conclusions

Our findings highlight the significance of specific-proteins associated with drought tolerance, and verified the potential value of Tibetan wild barley in improving drought tolerance of barley as well as other cereal crops.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1657-3) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
Under field conditions, drought and heat stress typically happen simultaneously and their negative impact on the agricultural production is expected to increase worldwide under the climate change scenario. In this study, we performed RNA‐sequencing analysis on leaves of wild barley (Hordeum spontaneum) originated from the northern coastal region of Egypt following individual drought acclimation (DA) and heat shock (HS) treatments and their combination (CS, combined stresses) to distinguish the unique and shared differentially expressed genes (DEG). Results indicated that the number of unique genes that were differentially expressed following HS treatment exceeded the number of those expressed following DA. In addition, the number of genes that were uniquely differentially expressed in response to CS treatment exceeded the number of those of shared responses to individual DA and HS treatments. These results indicate a better adaptation of the Mediterranean wild barley to drought conditions when compared with heat stress. It also manifests that the wild barley response to CS tends to be unique rather than common. Annotation of DEG showed that metabolic processes were the most influenced biological function in response to the applied stresses.  相似文献   

5.

Aims

Aluminum (Al) toxicity is an important limitation to maize production in many tropical and sub-tropical acid soil areas. The aim of this study was to survey the variation in Al tolerance in a panel of maize lines adapted for Kenya and look for novel sources of Al tolerance.

Methods

112 Kenyan maize accessions were phenotyped for Al tolerance in solution culture. Several Al tolerance-related parameters including relative net root growth (RNRG), root apex Al accumulation, Al-activated root organic acid exudation, and expression of the maize Al tolerance gene, ZmMATE1, were used to classify Kenyan maize accessions.

Results

Based on RNRG, 42 %, 28 %, and 30 % of the lines were classified as highly tolerant, moderately tolerant and sensitive, respectively. Tolerant accessions accumulated less Al in their root apices compared to sensitive lines. The Kenyan maize line, CON 5, and the Brazilian standard for tolerance, Cateto, exhibited the greatest Al tolerance based on RNRG, but CON 5 had only about 50 % of ZmMATE1 gene expression relative to Cateto. CON 5 also had low root apex Al content and high citrate exudation, suggesting that it may employ a citrate transporter other than ZmMATE1.

Conclusions

We identified a very Al tolerant Kenyan maize line whose Al tolerance may be based in part on a novel tolerance gene. The maize lines identified in this study are useful germplasm for the development of varieties suitable for agriculture on acid soils in Kenya.
  相似文献   

6.
7.
Aluminium (Al) toxicity and phosphorus (P) deficiency often co-exist in acidic soils and limit plant growth and crop production. To investigate the alleviating effects of different levels of phosphorus on Al stress, greenhouse hydroponic experiments were conducted using two contrasting Tibetan wild barley genotypes XZ16 and XZ61 of Al tolerant and sensitive, respectively, and Al tolerant cv. Dayton. The results showed that Al stress induced reduction in P accumulation in plants; and stem and leaf P concentrations of the three genotypes, except of XZ16 under HP + Al (100 µM Al with high level of 360 µM P) which was close to the control level. XZ16 recorded significantly higher P accumulation in plants, compared with XZ61 and Dayton, and P concentrations in leaves under Al stress, and in stems under NP + Al (100 µM Al with normal level of 180 µM P) and HP + Al. Meanwhile, H+-, Ca2+Mg2+-, and Total- ATPase activities in XZ16 and Dayton under Al stress were markedly higher than in XZ61. Normal or high level of P under Al stress could relieve Al stress as enhanced plant biomass, with increased photosystem II photochemistry (Fv/Fm) and P content, relative to the low level of 90 µM P. Compared with XZ61, addition of high P concentration for XZ16 significantly increased the values of Gs and Tr, with higher root GPX and H+-ATPase activities, and such nutrient elements as P, Mg and Ca in stems and leaves, and induced more malate secretion, but less MDA accumulation.  相似文献   

8.
Low phosphorus (LP) causes a dramatic change of root system architecture in plants, which is possibly mediated by signaling pathways of hormones. In order to understand the regulatory mechanisms of the root development under LP, we examined the potential role of phytohormones in response to LP using three barley genotypes, differing in LP tolerance, namely 2 Tibetan wild barley genotypes XZ99 (LP tolerant) and XZ100 (LP sensitive), and a cultivated barley ZD9 (LP moderately tolerant). The results showed that LP stress caused a number of changes in root development, with XZ99 having less primary root growth inhibition, more lateral root and root hair formation than the other two genotypes. Meanwhile, LP stress also resulted in the dramatic changes in plant hormone contents, with changed extent and pattern differing among the three genotypes. The relative expression of genes responsible for indole acetic acid (IAA) and ethylene synthesis in roots also showed a significant difference among genotypes in both control and LP conditions. It can be concluded that the root system of Tibetan wild barley XZ99 adapts to phosphorus deficiency by changing the signal transduction pathway mediated by auxin, ethylene and cytokinins. However, further studies are needed to elucidate the behaviors of the key genes involved in the hormone-related response.  相似文献   

9.
Drought is a major stress which can seriously limit yield in many crops including barley. Wild barley introgression lines (ILs) like the S42IL library may enhance drought stress tolerance of barley cultivars through the introduction of exotic alleles. The S42IL library was already characterized with 636 Illumina SNPs. New approaches like genotyping by sequencing (GBS) are available for barley to enhance the characterization of ILs. We generated an improved genetic map of the S42IL library, consisting of 4,201 SNPs by adding GBS data. The new map with a total length of 989.2 cM confirmed the extent of wild barley introgressions. Adding GBS data increased the resolution of the S42IL map tenfold from 0.4 to 4.2 markers/cM. This may assist to select possible candidate genes that improve drought tolerance. In four greenhouse experiments, juvenile drought stress response of 52 barley S42ILs was tested to identify quantitative trait loci (QTL). Thirteen S42ILs showed effects for plant biomass and leaf senescence. Subsequently, two verification experiments were conducted with these S42ILs. Nine out of eleven QTL were verified, and 22 additional QTL were detected. For 21 QTL, the Hsp allele increased trait performance, indicating the value of wild barley introgressions. For example, S42IL-107 and S42IL-123 produced more biomass under drought. Two different water-saving strategies were observed. S42IL-143 and S42IL-129 both revealed increased relative water content under drought. While S42IL-143 reduced biomass under drought, S42IL-129 maintained a high biomass production. We recommend using S42IL-107, S42IL-123 and S42IL-129 in barley breeding programs to enhance drought tolerance.  相似文献   

10.

Aims

Potatoes are a globally important source of food whose production requires large inputs of fertiliser and water. Recent research has highlighted the importance of the root system in acquiring resources. Here measurements, previously generated by field phenotyping, tested the effect of root size on maintenance of yield under drought (drought tolerance).

Methods

Twelve potato genotypes, including genotypes with extremes of root size, were grown to maturity in the field under a rain shelter and either irrigated or subjected to drought. Soil moisture, canopy growth, carbon isotope discrimination and final yields were measured. Destructively harvested field phenotype data were used as explanatory variables in a general linear model (GLM) to investigate yield under conditions of drought or irrigation.

Results

Drought severely affected the small rooted genotype Pentland Dell but not the large rooted genotype Cara. More plantlets, longer and more numerous stolons and stolon roots were associated with drought tolerance. Previously measured carbon isotope discrimination did not correlate with the effect of drought.

Conclusions

These data suggest that in-field phenotyping can be used to identify useful characteristics when known genotypes are subjected to an environmental stress. Stolon root traits were associated with drought tolerance in potato and could be used to select genotypes with resilience to drought.  相似文献   

11.
12.
The goal of the present study was to select BC2-lines from a cross between Hordeum vulgare and H. vulgare ssp. spontaneum and to identify introgressed candidate regions responsible for a superior pre-flowering development across environments including drought stress conditions by using stability parameter and genotype mean estimates. Three experiments were carried out under controlled environmental conditions. Drought stress was induced by permanent suboptimal water supply, stress cycles in continuously drying soils, and increased transpiration demands by reducing relative humidity of the air. The environmental effects on shoot dry weight, leaf area, tiller number, and root lengths of 36 lines and the recurrent parent, the spring barley cultivar ‘Scarlett’ was tested in ten different conditions. Results showed that 11 genotypes responded significantly (P = 0.05) different from the recurrent parent in at least one of the measured traits. The introgressions of those lines were assigned to five genome regions, which have been suggested as QTL regions for related traits before. Regions on chromosome 4H influence tillering and one region each on 2H, 5H, and 7H probably has effects on shoot dry weight and leaf area. Introgressions on the mentioned regions increased trait values in every case. Leaf area was highly correlated to shoot dry weight and tiller number while the correlation between shoot dry weight and tiller number was not significant. A weak correlation was observed between tiller number and root lengths. Slopes of response curves of lines to increasing water shortage did not significantly differ from the population mean and from the recurrent parent. Results give hint that superior genotypes within the population develop well under both well-watered and drought stress conditions.  相似文献   

13.
Drought is a major threat to world agriculture. In order to identify proteins associated with plant drought tolerance, barley varieties bred in the UK (Golden Promise) and Iraq (Basrah) were compared. The variety Basrah showed physiological adaptations to drought when compared to Golden Promise, for example relative water content of roots and shoots after 1 week of drought was much higher for Basrah than for Golden Promise. DIGE analysis was carried out on proteins from roots and leaves under control and drought conditions. Twenty‐four leaf and 45 root proteins were identified by MALDI‐TOF MS. The relative expression patterns of the identified proteins fell into a number of distinct classes. The variety Basrah is characterised by constitutive expression or higher drought‐induced expression levels of proteins regulating ROS production and protein folding. Photosynthetic enzymes, by contrast, were downregulated in Basrah. Enzyme assays showed a good correlation between DIGE‐derived protein abundance estimates and enzyme activity in extracts. Overall, this study shows that the enhanced drought tolerance of variety Basrah is driven by an enhanced regulation of ROS under drought.  相似文献   

14.
15.
Soil salinity and drought are the two most common and frequently co‐occurring abiotic stresses limiting cotton growth and productivity. However, physiological mechanisms of tolerance to such condition remain elusive. Greenhouse pot experiments were performed to study genotypic differences in response to single drought (4% soil moisture; D) and salinity (200 mM NaCl; S) stress and combined stresses (D + S) using two cotton genotypes Zhongmian 23 (salt‐tolerant) and Zhongmian 41 (salt‐sensitive). Our results showed that drought and salinity stresses, alone or in combination, caused significant reduction in plant growth, chlorophyll content and photosynthesis in the two cotton genotypes, with the largest impact visible under combined stress. Interestingly, Zhongmian 23 was more tolerant than Zhongmian 41 under the three stresses and displayed higher plant dry weight, photosynthesis and antioxidant enzymes activities such as superoxide dismutase (SOD), peroxidase (POD) catalase (CAT) and ascorbate peroxidase (APX) activities compared to control, while those parameters were significantly decreased in salt‐stresses Zhongmian 41 compared to control. Moreover, Na+/K+‐ATPase activity was more enhanced in Zhongmian 23 than in Zhongmian 41 under salinity stress. However, under single drought stress and D + S stress no significant differences were observed between the two genotypes. No significant differences were detected in Ca2+/Mg2+‐ATPase activity in Zhongmian 41, while in Zhongmian 23 it was increased under salinity stress. Furthermore, Zhongmian 23 accumulated more soluble sugar, glycine‐betaine and K+, but less Na+ under the three stresses compared with Zhongmian 41. Obvious changes in leaf and root tips cell ultrastructure was observed in the two cotton genotypes. However, Zhongmian 23 was less affected than Zhongmian 41 especially under salinity stress. These results give a novel insight into the mechanisms of single and combined effects of drought and salinity stresses on cotton genotypes.  相似文献   

16.
Summary Under favorable nutrition, accessions of the weedy barleygrass (Hordeum leporinum and H. glaucum) had a higher relative growth rate (RGR) than did accessions of cultivated barley (H. vulgare) or its wild progenitor (H. spontaneum). RGR was not positively correlated with the presumed level of soil fertility at the collection site of an accession either within or among species. RGR was reduced more strongly by low-P supply in the progenitor than in the crop or weed, indicating that selection of cultivars to grow in fertile soils had not reduced their potential to grow effectively under low-P conditions. Seed and embryo masses were more important than RGR in determining plant size. Relative differences among assessions in plant size declined with time, because (1) accessions with small seeds had a higher RGR, and (2) RGR of large-seeded accessions declined with time. Absolute growth rate correlated positively with leaf area and negatively with photosynthetic rate per unit leaf area. Under favorable nutrition, maximum photosynthetic rate correlated negatively with leaf length and therefore was higher in the weeds than in the crop or progenitor accessions. P absorption potential did not differ consistently among species but generally increased in response to P stress. Cultivars produced a few tall tillers, whereas weeds and progenitors produced many small tillers. The cultivar had a larger proportion of reproductive tillers, allocated a larger proportion of biomass to grain, and produced larger grains than did the weedy accession. By contrast, the weed began maturing seeds sooner, produced more reproductive tillers, and produced more grains per car and per plant than did the cultivar. The study suggests two major conclusions: (1) A low RGR is not an adaptation to low P supply in annual Hordeum species. (2) Seed size is the major determinant of early plant size between accessions in these Hordeum species under favorable nutrition. However, large seed size indirectly results in a low RGR because of the inverse relationship between plant size and RGR and results in a low photosynthetic rate because of the inverse relationship between leaf size and photosynthesis.  相似文献   

17.
This research was undertaken to identify and map quantitative trait loci (QTLs) associated with five parameters of rice root morphology and to determine if these QTLs are located in the same chromosomal regions as QTLs associated with drought avoidance/tolerance. Root thickness, root:shoot ratio, root dry weight per tiller, deep root dry weight per tiller, and maximum root length were measured in three replicated experiments (runs) of 203 recombinant inbred lines grown in a greenhouse. The lines were from a cross between indica cultivar Co39 andjaponica cultivar Moroberekan. The 203 RI lines were also grown in three replicated field experiments where they were drought-stressed at the seedling, early vegetative, and late-vegetative growth stage and assigned a visual rating based on leaf rolling as to their degree of drought avoidance/tolerance. The QTL analysis of greenhouse and field data was done using single-marker analysis (ANOVA) and interval analysis (Mapmaker QTL). Most QTLs that were identified were associated with root thickness, root/shoot ratio, and root dry weight per tiller, and only a few with deep root weight. None were reliably associated with maximum root depth due to genotype-by-experiment interaction. Root thickness and root dry weight per tiller were the characters found to be the least influenced by environmental differences between greenhouse runs. Correlations of root parameters measured in greenhouse experiments with field drought avoidance/tolerance were significant but not highly predictive. Twelve of the fourteen chromosomal regions containing putative QTLs associated with field drought avoidance/tolerance also contained QTLs associated with root morphology. Thus, selecting for Moroberekan alleles at marker loci associated with the putative root QTLs identified in this study may be an effective strategy for altering the root phenotype of rice towards that commonly associated with drought-resistant cultivars.  相似文献   

18.
19.
Drought is one of the major environmental stress that adversely affect the growth and development of oil seed plant, safflower. There is a limited knowledge on proteomic responses to support physiological, biochemical changes in how safflowers can regulate growth and metabolism under drought conditions and followed by re-watering. The changes in morphological, physiological, biochemical and proteomics of safflower genotypes (Carthamus tinctorius L.; Remzibey-05 and Linas, tolerant and sensitive cultivars, respectively, and C. oxyacantha M. Bieb., wild type) after exposure to drought and followed by re-watering have been examined. Drought negatively affected the shoot weight, water content, chlorophyll fluorescence, and biochemical parameters, including photosynthetic pigment, proline, MDA, and H2O2 contents and antioxidant enzyme activities in all genotypes, while the re-watering period allowed Remzibey-05 to recover, and it even provided the wild type completely recovered (approximately 100%). A total of 72 protein spots were observed as differently accumulated under treatments. The identified proteins were mainly involved in photosynthesis and carbohydrate, protein, defense, and energy metabolisms. Protein accumulation related to these metabolisms in Remzibey-05 were decreased under drought, while increased following re-watering. However, sensitive cultivar, Linas, could not exhibit an effective performance under drought and recovery when compared with other safflower genotypes. Supplementary InformationThe online version contains supplementary material available at (10.1007/s12298-021-00934-2).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号