首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We deal with the comparison of several finite volume TVD schemes and finite difference ENO schemes and we describe a second order finite volume WENO scheme which was developed for the case of general unstructured meshes. The proposed second order WENO reconstruction is much simpler than the original ENO scheme introduced in [Harten and Chakravarthy 1991]. Moreover, the proposed WENO method is very easily extendible for unstructured meshes in 3D. All above mentioned schemes are applied for the solution of 2D and 3D transonic flows in the turbines and channels and the numerical solution is compared to experimental results or to the results obtained by other authors.  相似文献   

3.
The weighted essentially non-oscillatory (WENO) schemes are a popular class of high order numerical methods for hyperbolic partial differential equations (PDEs). While WENO schemes on structured meshes are quite mature, the development of finite volume WENO schemes on unstructured meshes is more difficult. A major difficulty is how to design a robust WENO reconstruction procedure to deal with distorted local mesh geometries or degenerate cases when the mesh quality varies for complex domain geometry. In this paper, we combine two different WENO reconstruction approaches to achieve a robust unstructured finite volume WENO reconstruction on complex mesh geometries. Numerical examples including both scalar and system cases are given to demonstrate stability and accuracy of the scheme.  相似文献   

4.
The weighted essentially non-oscillatory (WENO) method is an excellent spatial discretization for hyperbolic partial differential equations with discontinuous solutions. However, the time-step restriction associated with explicit methods may pose severe limitations on their use in applications requiring large scale computations. An efficient implicit WENO method is necessary. In this paper, we propose a prototype flux-implicit WENO (iWENO) method. Numerical tests on classical scalar equations show that this is a viable and stable method, which requires appropriate time-stepping methods. Future study will include the examination of such methods as well as extension of iWENO to systems and higher dimensional problems.Sigal Gottlieb - The work of this author supported by NSF grant DMS-0106743.Steven J. Ruuth - The work of this author was partially supported by a grant from NSERC Canada.  相似文献   

5.
6.
This paper reports high resolution simulations using fifth-order weighted essentially non-oscillatory (WENO) schemes with a third-order TVD Runge-Kutta method to examine the features of turbulent mixing layers. The implementation of high-order WENO schemes for multi-species non-reacting Navier-Stokes (NS) solver has been validated through selective test problems. A comparative study of performance behavior of different WENO schemes has been made on a 2D spatially-evolving mixing layer interacting with oblique shock. The Bandwidth-optimized WENO scheme with total variation relative limiters is found to be less dissipative than the classical WENO scheme, but prone to exhibit some dispersion errors in relatively coarse meshes. Based on its accuracy and minimum dissipation error, the choice of this scheme has been made for the DNS studies of temporally-evolving mixing layers. The results are found in excellent agreement with the previous experimental and DNS data. The effect of density ratio is further investigated, reflecting earlier findings of the mixing growth-rate reduction.  相似文献   

7.
In (J. Comput. Phys. 229: 8105–8129, 2010), Li and Qiu investigated the hybrid weighted essentially non-oscillatory (WENO) schemes with different indicators for Euler equations of gas dynamics. In this continuation paper, we extend the method to solve the one- and two-dimensional shallow water equations with source term due to the non-flat bottom topography, with a goal of obtaining the same advantages of the schemes for the Euler equations, such as the saving computational cost, essentially non-oscillatory property for general solution with discontinuities, and the sharp shock transition. Extensive simulations in one- and two-dimensions are provided to illustrate the behavior of this procedure.  相似文献   

8.
Adaptive Mesh Refinement (AMR) schemes are generally considered promising because of the ability of the scheme to place grid points or computational degrees of freedom at the location in the flow where truncation errors are unacceptably large. For a given order, AMR schemes can reduce work. However, for the computation of turbulent or non-turbulent mixing when compared to high order non-adaptive methods, traditional 2nd order AMR schemes are computationally more expensive. We give precise estimates of work and restrictions on the size of the small scale grid and show that the requirements on the AMR scheme to be cheaper than a high order scheme are unrealistic for most computational scenarios.  相似文献   

9.
10.
In this paper, a speed-up strategy for finite volume WENO schemes is developed for solving hyperbolic conservation laws. It adopts p-adaptive like reconstruction, which automatically adjusts from fifth order WENO reconstruction to first order constant reconstruction when nearly constant solutions are detected by the undivided differences. The corresponding order of accuracy for the solutions is shown to be the same as obtained by original WENO schemes. The strategy is implemented with both WENO and mapped WENO schemes. Numerical examples in different space dimensions show that the strategy can reduce the computational cost by 20–40%, especially for problems with large fraction of constant regions.  相似文献   

11.
12.
13.
In this paper we develop a high order explicit finite difference weighted essentially non-oscillatory (WENO) scheme for solving a hierarchical size-structured population model with nonlinear growth, mortality and reproduction rates. The main technical complication is the existence of global terms in the coefficient and boundary condition for this model. We carefully design approximations to these global terms and boundary conditions to ensure high order accuracy. Comparing with the first order monotone and second order total variation bounded schemes for the same model, the high order WENO scheme is more efficient and can produce accurate results with far fewer grid points. Numerical examples including one in computational biology for the evolution of the population of Gambussia affinis, are presented to illustrate the good performance of the high order WENO scheme. Chi-Wang Shu was supported in part by NSFC grant 10671190 while he was visiting the Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China. Additional support was provided by ARO grant W911NF-04-1-0291 and NSF grant DMS-0510345. Mengping Zhang was supported in part by NSFC grant 10671190.  相似文献   

14.
In this paper we study an order barrier for low-storage diagonally implicit Runge–Kutta (DIRK) methods with positive weights. The Butcher matrix for these schemes, that can be implemented with only two memory registers in the van der Houwen implementation, has a special structure that restricts the number of free parameters of the method. We prove that third order low-storage DIRK methods must contain negative weights, obtaining the order barrier \(p\le 2\) for these schemes. This result extends the well known one for symplectic DIRK methods, which are a particular case of low-storage DIRK methods. Some other properties of second order low-storage DIRK methods are given.  相似文献   

15.
We develop a new class of schemes for the numerical solution of first-order steady conservation laws. The schemes are of the residual distribution, or fluctuation-splitting type. These schemes have mostly been developed in the context of triangular or tetrahedral elements whose degrees of freedom are their nodal values. We work here with more general elements that allow high-order accuracy. We introduce, for an arbitrary number of degrees of freedom, a simple mapping from a low-order monotone scheme to a monotone scheme that is as accurate as the degrees of freedom will allow. Proofs of consistency, convergence and accuracy are presented, and numerical examples from second, third and fourth-order schemes.  相似文献   

16.
17.
The gas dynamics equations, coupled with a static gravitational field, admit the hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term. Many astrophysical problems involve the hydrodynamical evolution in a gravitational field, therefore it is essential to correctly capture the effect of gravitational force in the simulations. Improper treatment of the gravitational force can lead to a solution which either oscillates around the equilibrium, or deviates from the equilibrium after a long time run. In this paper we design high order well-balanced finite difference WENO schemes to this system, which can preserve the hydrostatic balance state exactly and at the same time can maintain genuine high order accuracy. Numerical tests are performed to verify high order accuracy, well-balanced property, and good resolution for smooth and discontinuous solutions. The main purpose of the well-balanced schemes designed in this paper is to well resolve small perturbations of the hydrostatic balance state on coarse meshes. The more difficult issue of convergence towards such hydrostatic balance state from an arbitrary initial condition is not addressed in this paper.  相似文献   

18.
A numerical method for simulation of transitional-regime gas flows in microdevices is presented. The method is based on solving relaxation-type kinetic equations using high-order shock capturing weighted essentially non-oscillatory (WENO) schemes in the coordinate space and the discrete ordinate techniques in the velocity space. In contrast to the direct simulation Monte Carlo (DSMC) method, this approach is not subject to statistical scattering and is equally efficient when simulating both steady and unsteady flows. The presented numerical method is used to simulate some classical problems of rarefied gas dynamics as well as some microflows of practical interest, namely shock wave propagation in a microchannel and steady and unsteady flows in a supersonic micronozzle. Computational results are compared with Navier–Stokes and DSMC solutions.  相似文献   

19.
In this paper, we present a class of finite volume trigonometric weighted essentially non-oscillatory (TWENO) schemes and use them as limiters for Runge-Kutta discontinuous Galerkin (RKDG) methods based on trigonometric polynomial spaces to solve hyperbolic conservation laws and highly oscillatory problems. As usual, the goal is to obtain a robust and high order limiting procedure for such a RKDG method to simultaneously achieve uniformly high order accuracy in smooth regions and sharp, non-oscillatory shock transitions. The major advantage of schemes which are based on trigonometric polynomial spaces is that they can simulate the wave-like and highly oscillatory cases better than the ones based on algebraic polynomial spaces. We provide numerical results in one and two dimensions to illustrate the behavior of these procedures in such cases. Even though we do not utilize optimal parameters for the trigonometric polynomial spaces, we do observe that the numerical results obtained by the schemes based on such spaces are better than or similar to those based on algebraic polynomial spaces.  相似文献   

20.
In this paper, we generalize the high order well-balanced finite difference weighted essentially non-oscillatory (WENO) scheme, designed earlier by us in Xing and Shu (2005, J. Comput. phys. 208, 206–227) for the shallow water equations, to solve a wider class of hyperbolic systems with separable source terms including the elastic wave equation, the hyperbolic model for a chemosensitive movement, the nozzle flow and a two phase flow model. Properties of the scheme for the shallow water equations (Xing and Shu 2005, J. Comput. phys. 208, 206–227), such as the exact preservation of the balance laws for certain steady state solutions, the non-oscillatory property for general solutions with discontinuities, and the genuine high order accuracy in smooth regions, are maintained for the scheme when applied to this general class of hyperbolic systems  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号