共查询到20条相似文献,搜索用时 15 毫秒
1.
Carlota Barañano Emilio Fernández Gonzalo Méndez Jesús S. Troncoso 《Marine Biology Research》2017,13(9):955-966
The consequences of physical disturbances to seagrasses depend on disturbance frequency relative to the capacity for recolonization and recovery following fragmentation. In a subtidal seagrass meadow of Zostera marina L., following a season of clam harvesting, we compared the temporal change of shoot density and biomass of this seagrass together with the community structure of the associated macroinvertebrates, at two sites differing in the intensity of the physical disturbance. The impacted site showed significantly lower shoot density and total biomass than the non-impacted site initially. The increase in above-ground biomass over four months (May to September) of this species was significantly higher (46%) at the impacted site than in the area not affected by the disturbance. Four months after cessation of the extraction activity, the biomass and density values of Z. marina reached similar values to those measured in the non-impacted site. The sexual reproductive effort of the seagrass population affected by the disturbance (4%) was significantly lower than at the non-impacted site (10%), which could influence genetic diversity and the seed bank. The community structure of molluscs showed 54% similarity between sites at the beginning of the study. Four months later, mollusc communities increased to a similarity of 74%. The current closure season (four months annually) established for the recovery of the exploited stocks of bivalves allowed the recovery of Z. marina density and biomass. Nevertheless, other population properties, such as those related to reproductive patterns, remained altered by the disturbance. 相似文献
2.
We assess the suitability of conventional replanting techniques of Rhizophora mucronata and the relationship with soil properties, and compare the differences between rehabilitation and non-rehabilitation sites, on Carey Island, Malaysia. The average survival rate of planted seedlings at the rehabilitation site was 46% in the first six months, gradually reducing to complete mortality after one year, while no survival was recorded at the non-rehabilitation site from the beginning. Over the short period, survival of the clumped planting technique yielded the highest survival rate (75%) compared with random (33%) and uniform (30%) techniques; with a height increment of 2.48?±?1.87?cm/month, diameter increment of 0.49?±?0.81?mm/month, leaf increment of 2.05?±?2.80 and chlorophyll content of 32.08?±?5.80 SPAD (= Soil Plant Analysis Development values). Fifteen new recruits of Avicennia spp. with a 60% survival rate were recorded in the rehabilitation site at the end of the study. Soil texture changed significantly at the rehabilitation site from sandy loam (clay, 2.85%; silt 33.93%; sand, 63.21%) to silty loam (clay, 1.88%; silt 60.74%; sand, 37.38%). Soil nutrients: carbon (C), nitrogen (N) and potassium (K) were significantly higher in the top 40?cm at the rehabilitation site while phosphorus (P) was lower. We argue that nutrient differences between the rehabilitation and non-rehabilitation sites affected the health of both planted and wild seedlings and ultimately the success of the rehabilitation effort. As the soil condition improves at the rehabilitation site, natural recruitment would be the best available option in this restoration process. 相似文献
3.
《Aquatic Botany》2005,81(4):367-379
Eelgrass (Zostera marina) was grown under exposure to high levels of sediment sulfides to examine their ability to reoxidize sulfides intruding into the plants. The plants were kept under full light (control and high sulfide level) and at 10% of light saturation (high sulfide level) for 3 weeks and growth and accumulation of elemental sulfur (S0) in the plants were examined. The growth rate was reduced with ∼75% in the low light treatment, whereas there was no significant difference between the rates at full light saturation. S0 was accumulating in the below-ground structures of the plants exposed to high sulfide concentrations with highest concentration in the youngest roots and oldest internodes. There was no accumulation of S0 in the leaves, suggesting that the intruding sulfides were reoxidized in the below-ground structures before reaching the leaves. The accumulation of S0 was higher in the roots of the low light treatment (up to two times) suggesting a larger intrusion of sulfides. These plants also appeared highly affected by the treatment with rotting meristems and increased mortality after the 3-week growth period. These results are the first to show an accumulation of sulfur compounds internally in seagrasses as a result of reoxidation of sulfides. The reoxidation is facilitated by the internal transport of oxygen and is an example of the advantage of the internal lacunae system in seagrasses. 相似文献
4.
Copper (Cu2+) is an essential nutrient for plants but toxic at high concentrations. We subjected seedlings and young plants of eelgrass Zostera marina to different seawater Cu concentrations (3, 4, 5, 10, 30 and 50?µg?l?1) for over 30 days under controlled laboratory conditions. Natural seawater without added Cu (3?µg?l?1) was used as reference seawater. We measured plant response in terms of survivorship, morphology, growth, productivity and leaf pigment concentration. Survival analysis combined with morphological, dynamic and productive assessment suggested that the optimum seawater Cu concentration for the establishment of Z. marina seedlings and young plants is 4?μg?l?1. The photosynthetic response of young plants to copper enrichment, including an increase in chlorophyll content under low Cu concentration treatment but significant decrease when treated with high concentrations of Cu, is similar to those reported for other seagrass species. NOEC (no observed effect concentration), LOEC (lowest observed effect concentration) and LC50 (lethal concentration that caused an increase in mortality to 50% of that of the control) values of seedlings were significantly lower than those of young plants, implying a reduced Cu tolerance to high concentrations (>10?μg?l?1). This study provides data that could prove helpful in the development of successful eelgrass restoration and conservation. 相似文献
5.
Decomposition processes of eelgrass,Zostera marina L. 总被引:1,自引:0,他引:1
G. C. Pellikaan 《Aquatic Ecology》1982,16(1):83-92
Summary In Lake Grevelingen decomposition of eelgrass was studied in the field with the litter bag method from July 1977 till February 1978. After 6 months only 6% refractory matter remained in the bags. Under aerobic conditions the decomposition of eelgrass is completed within one year. The organic fraction decreased from 80 to 55%. Chlorophyll a was always present in the detritus, but with this parameter no decomposition stages could be distinguished. Fragmentation was mainly physical, and a particle size spectrum showed a maximum towards the small pieces.The POC content was fairly constant, and the N and P content changed during the decomposition. The C/N and C/P ratios increased the first 10 weeks (leaching) and decreased after 10 weeks (microbial colonization). This did not correspond with the three decomposition stages, based on the dry weight loss per day. The C/N ratio does not seem to be a simple index for the decomposition stage in eelgrass.Communication no. 235 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherlands. 相似文献
6.
The distributions of cadmium, chromium, lead, and zinc in eelgrass were studied in samples collected from the field, and the loss/accumulation of the metals during decomposition of eelgrass leaves was studied in laboratory experiments.Concentrations of heavy metals in the below grounds parts were greater in the roots than in the different age groups of the rhizomes. In the rhizomes, the highest concentrations of lead were recorded in the oldest parts, whereas highest chromium and zinc concentrations were found in the youngest parts. The concentration of cadmium did not vary. In the above ground parts, the concentrations of cadmium, lead, and zinc increased with age of the leaves, and concentrations in the leaves were greater than in the stem fraction. The concentrations of chromium decreased with age of the leaves.In the laboratory study of decomposition of leaf material, the concentrations of chromium, lead and zinc increased significantly and a net absorption from the surrounding water was recorded. Cadmium concentrations were relatively constant and a loss of cadmium was proportional to the release of soluble organic compounds indicating an association of cadmium with the soluble phase.The investigation demonstrated the utility of compositional analyses and decomposition experiments in assessing the significance of eelgrass in the heavy metal cycling in coastal areas. Furthermore, significant differences in the fate of heavy metals associated with eelgrass detritus are discussed. 相似文献
7.
Seed germination and seedling growth of Zostera marina L. were monitored in the Chesapeake Bay in 1979 and 1980. Harvested seeds were placed in small acrylic tubes at several sites representing the salinity range of Z. marina distribution. Seed germination was observed first in late September and continued through May, with peaks in the fall and spring. The majority of seeds that germinated (66%) did so between December and March when water temperatures ranged from 0–10°C. There was no correlation between sites (different salinity regimes) and frequency of germination rates, indicating that salinity was not a major factor in the germination process in this study. Additional information on seed germination was available for seeds collected in 1977 and 1980 and subsequently monitored for germination at only one site. These data were similar to germination frequency recorded in 1979–1980.Seedling growth was measured from individuals collected from an existing Zostera marina bed. Seedlings were collected from November through May, at which time we could no longer distinguish seedlings from existing vegetative stock. Growth was characterized by the increased length of the primary shoot, number of leaves per shoot and numbers of shoots per plant. Seedling growth was slow during the winter months (water temperature ? 10°C) but rapidly increased in the spring (temperatures > 10°C). The size range of the harvested seedlings indicated that seed germination in the field probably occurred from October through April, corroborating evidence from the seed germination experiments. 相似文献
8.
Paul Garth Harrison 《Aquatic Ecology》1982,16(1):115-115
Curie point pyrolysis-mass spectrometry is a powerful method for fast characterization of complex, nonvolatile materials. Fast, reproducible heating of the material results in a characteristic mixture of volatile fragment products, which is analyzed on-line by mass spectrometry. The method can be used for various purposes ranging from classification and identification to quality control and biochemical analysis and has already proven to be a versatile tool in the fields of (micro-) biology, biochemistry, soil science and geochemistry. Our fully automated Py-MS system for batch-wise analysis of series of samples will be presented, together with computer methods for multivariate analysis of the spectral data. Some results obtained within the application-fields mentioned above will also be given. 相似文献
9.
Using an enriched genomic library, we developed seven (CT)n/(GA)n microsatellite loci for eelgrass Zostera marina L. Enrichment is described and highly recommended for genomes in which microsatellites are rare, such as in many plants. A test for polymorphism was performed on individuals from three geographically separated populations (N = 15/population) and revealed considerable genetic variation. The number of alleles per locus varied between five and 11 and the observed heterozygosities for single loci ranged from 0.16 to 0.81 within populations. Mean allele lengths were markedly different among populations, indicating that the identified loci will be useful in studying population structure in Z. marina. As the frequency of the most abundant multilocus genotype within populations was always < 1%, these loci have sufficient resolving power to address clone size in predominantly vegetatively reproducing populations. 相似文献
10.
We characterized 37 single nucleotide polymorphism (SNP) makers for eelgrass Zostera marina. SNP markers were developed using existing EST (expressed sequence tag)-libraries to locate polymorphic loci and develop primers from the functional expressed genes that are deposited in The ZOSTERA database (V1.2.1). SNP loci were genotyped using a single-base-extension approach which facilitated high-throughput genotyping with minimal optimization time. These markers show a wide range of variability among 25 eelgrass populations and will be useful for population genetic studies including evaluation of population structure, historical demography, and phylogeography. Potential applications include haplotype inference of physically linked SNPs and identification of genes under selection for temperature and desiccation stress. 相似文献
11.
Variable responses of native eelgrass Zostera marina to a non-indigenous bivalve Musculista senhousia 总被引:6,自引:0,他引:6
The transport and establishment of non-indigenous species in coastal marine environments are increasing worldwide, yet few
studies have experimentally addressed the interactions between potentially dominant non-native species and native organisms.
We studied the effects of the introduced mussel Musculista senhousia on leaf and rhizome growth and shoot density of eelgrass Zostera marina in San Diego Bay, California. We added M. senhousia over a natural range in biomass (0–1200 g dry mass/m2) to eelgrass in transplanted and established beds. The effects of the non-indigenous mussel varied from facilitation to interference
depending on time, the abundance of M. senhousia, and the response variable considered. Consistent results were that mussel additions linearly inhibited eelgrass rhizome
elongation rates. With 800 g dry mass/m2 of M. senhousia, eelgrass rhizomes grew 40% less than controls in two eelgrass transplantations and in one established eelgrass bed. These
results indicate that M. senhousia, could both impair the success of transplantations of eelgrass, which spread vegetatively by rhizomes, and the spread of
established Z. marina beds to areas inhabited by M. senhousia. Although effects on leaf growth were not always significant, in August in both eelgrass transplantations and established
meadows leaf growth was fertilized by mussels, and showed a saturation-type relationship to sediment ammonium concentrations.
Ammonium concentrations and sediment organic content were linear functions of mussel biomass. We found only small, non-consistent
effects of M. senhousia on shoot density of eelgrass over 6-month periods. In established eelgrass beds, but not in transplanted eelgrass patches
(≈0.8 m in diameter), added mussels suffered large declines. Hence, eelgrass is likely to be affected by M. senhousia primarily where Z. marina beds are patchy and sparse. Our study has management and conservation implications for eelgrass because many beds are already
seriously degraded and limited in southern California where the mussel is very abundant.
Received: 31 May 1997 / Accepted: 4 September 1997 相似文献
12.
The effects of pectin from the eelgrass Zostera marina on toxic liver injury induced by enteral administration of lead acetate are examined in experiments on rats. The results show that pectin helps to rapidly reduce lead concentration in liver, to decrease lipid peroxidation, and to normalize the levels of total cholesterol and triglycerides in blood serum and liver. 相似文献
13.
H. J. Lindeboom H. A. J. De Klerk-V. D. Driessche A. J. J. Sandee 《Aquatic Ecology》1982,16(1):93-102
Summary During five 28-hours measurements in 1981, the oxygen production and consumption in an eelgrass community in saline Lake Grevelingen were investigated using light plexiglass enclosures. Applying a conversion factor of 0.29 the amount of carbon fixed and the amount of organic carbon mineralized were estimated. Gross and net production were estimated over 24-hours periods.There appeared to be a good correlation between production and insolation on the water surface. For every measurement period the production as a function of light and aboveground eelgrass biomass in the enclosure were calculated. This showed a maximum of 5.10–6 mg C.J.–1 g dry weight–1 in April and minimum of 1.4.10–6 mg C.J.–1 g–1 in August.Using the calculated production coefficients, the insolation and the eelgrass biomass the gross production, net production and consumption during the growing season of 1976 were calculated. Gross production amounted to 340 gC.m–2, and net production came to 130 g C.m–2. Approximately 60 gC.m–2 was respired by the eelgrass plants while the remaining 150 gC.m–2 was consumed or mineralized by other organisms on the sampling spot. Approximately 120 g C.m–2.yr–1 was transported by wind and wave action towards the eastern part of the lake where it became anaerobically degraded. This resulted in the formation of sulfide and methane.Communication no. 236 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherlands. 相似文献
14.
Frederick T. Short 《Journal of experimental marine biology and ecology》1983,68(2):195-208
Natural and human-induced perturbations of eelgrass (Zostera marina L.) beds were used to examine the interaction between the sediment interstitial ammonium pool and nitrogen uptake by the plants. Eelgrass colonization of unvegetated areas was accompanied by a substantial decrease in the interstitial ammonium pool over a 4-yr period. The changes in interstitial ammonium and shoot density during colonization support an already determined relationship between shoot density and ammonium pool measurements. In field perturbation experiments, removing eelgrass leaves and sealing the sediment surface altered the flux of ammonium from the interstitial ammonium pool, and resulted in a rapid increase in interstitial ammonium concentrations. Measurements of ammonium accumulation under the various perturbation conditions and a control permitted calculation of the sediment ammonium flux. These estimates include uptake by eelgrass roots, regeneration in the root zone, and diffusion from the sediments. Nitrogen limitation was observed in some eelgrass beds. 相似文献
15.
Chi Guan Delphine Parrot Jutta Wiese Frank D. Sönnichsen Mahasweta Saha Deniz Tasdemir 《Biofouling》2017,33(10):867-880
A bioassay-guided approach was used to identify defense compounds that are present on the surface of Zostera marina and which inhibit settlement of microfoulers at natural concentrations. Moderately polar eelgrass surface extracts inhibited the settlement of seven marine bacteria and one yeast that originated from non-living substrata. In contrast, five other bacterial strains that had been directly isolated from eelgrass surfaces were all insensitive, which suggested a selective effect of surface metabolites on the microbial communities present on eelgrass. Bioassay-guided isolation of active compounds from the extracts in combination with UPLC-MS and 1H-NMR spectroscopy resulted in the identification of rosmarinic acid, luteolin-7-sulfate and diosmetin-7-sulfate or its isomer chrysoeriol-7-sulfate. All three compounds are nontoxic repellents, as they did not inhibit bacterial growth, but prevented bacterial settlement in a dose-dependent manner. Between 15.6 and 106.8 μg ml?1 of rosmarinic acid were present on the eelgrass surface, enough for half maximal settlement inhibition of bacteria. 相似文献
16.
《Aquatic Botany》2005,82(2):143-156
Recolonisation of eelgrass (Zostera marina L.) was studied in a Danish estuary during summer 2001 following an anoxia event the previous summer. Leaf bundles had detached from the rhizomes while healthy-looking roots and rhizomes remained in the sediment. We hypothesise that the stabilising effect of remaining belowground biomass, the presence of rhizomes with buds, the presence of a large seed bank and the potential surviving shoots from the previous population may stimulate and speed up recovery in previously colonised areas compared to bare areas.A large seed bank containing more than 11,000 seeds m−2 was found in the dieback area. Seeds were found in the upper 14 cm of the sediment but judging from the length of the hypocotyle of the seedlings, only seeds from the upper 5.5 cm of sediment germinated successfully. The upper 5.5 cm represented a seed pool of approximately 1000 seeds m−2. Germination of these seeds was the primary mode of recolonisation in the estuary, since 96% of the plants in the investigated plot were seedlings. Only 4% of the plants were survivors from the previous year.Although densities of seedlings may exceed densities of surviving shoots, we argue that plants surviving oxygen depletion may still contribute considerably to the recolonisation of a former dieback area as these plants have faster elongation and branching rates and lower mortality rates relative to seedlings.There was no indication of recolonisation from dormant buds on rhizomes. This finding was confirmed in laboratory experiments where buds failed to germinate in the absence of the apical shoot. We examined the structure and ageing of buds and found general withering with age, indicating that buds should germinate shortly after the dieback if at all. Our results, therefore, suggest that rhizome buds are not dormant buds but simply side shoots that have failed to grow. 相似文献
17.
Response of adenine nucleotides (ATP, ADP, AMP) and adenylate energy charge (EC) to atrazine, a triazine herbicide, was evaluated as an indicator of metabolic state in Zostera marina L. (eelgrass), a submerged marine angiosperm. Short-term (6 h) atrazine stress reduced ATP and total adenylates (AT) at both 10 and 100 ppb, but EC remained constant. Net productivity decreased at 100, but not at 10 ppb atrazine over 6 h. Long-term (21 day) atrazine stress was evidenced by growth inhibition and 50% mortality near 100 ppb. EC was reduced at 0.1, 1.0 and 10 ppb atrazine, but ATP and EC increased with physiological response to severe stress (100 ppb) after 21 days. Apparently, ATP and AT decrease over the short-term but rebound over the long-term with severe atrazine stress, increasing beyond control levels before plant death results. Supplementing adenine nucleotide and EC results with more conventional quantitative analyses should afford greater knowledge of physiological response to environmental variation. 相似文献
18.
Michael H. Huesemann Tom S. Hausmann Tim J. Fortman Ronald M. Thom Valerie Cullinan 《Ecological Engineering》2009,35(10):1395-1404
In view of the fact that there are presently no cost-effective in situ treatment technologies for contaminated sediments, a 60-week-long phytoremediation feasibility study was conducted in seawater-supplied outdoor ponds to determine whether eelgrass (Zostera marina) is capable of removing polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from submerged marine sediments. It was determined that all PAHs and PCBs, independent of the number of aromatic rings and degree of chlorination, respectively, were removed to a much larger extent in planted sediments compared to unplanted controls. After 60 weeks of treatment, the concentration of total PAHs decreased by 73% in planted sediments but only 25% in unplanted controls. Similarly, total PCBs declined by 60% in the presence of plants while none were removed in the unplanted sediment. Overall, the apparent PAH and PCB biodegradation was greatest in the sediment layer that contained most of the eelgrass roots. Abiotic desorption tests conducted at week 32 confirmed that the phytoremediation process was not controlled by mass-transfer or bioavailability limitations since all PAHs and PCBs desorbed rapidly and to a large extent from the sediment. PAHs were detected in both roots and shoots, with root and shoot bioaccumulation factors for total PAHs amounting to approximately 3 and 1, respectively, after 60 weeks of phytoremediation treatment. Similarly, the root bioaccumulation factor for total PCBs was around 4, while no PCBs were detected in the eelgrass leaves at the end of the experiment. The total mass fraction of PAHs and PCBs absorbed and translocated by plant biomass during the 60-week period was insignificant, amounting to less than 0.5% of the total mass of PAHs and PCBs which was initially present in the sediment. Finally, the number of total heterotrophic bacteria and hydrocarbon degraders was slightly but not statistically significantly greater in planted sediments than in unplanted controls. After ruling out contaminant loss to the water column or absorption and transformation within plant cells, it is most likely that the presence of eelgrass stimulated the microbial biodegradation of PAHs and PCBs in the rhizosphere by releasing root exudates, plant enzymes, or even oxygen. Additional research is needed to further elucidate these potential phytoremediation mechanisms. 相似文献
19.
Walker O. Smith Polly A. Penhale 《Journal of experimental marine biology and ecology》1980,48(3):233-242
The uptake of 14C-labeled organic compounds by Zostera marina L. (eelgrass) and its epiphytes was examined in an eelgrass community near Beaufort, North Carolina. Assimilation and respiration by new leaf growth (few epiphytes), heavily colonized Zostera, and an epiphytized artificial substratum were determined. Glutamic acid was removed from the medium most rapidly, followed by acetate, glucose, and glycine, which were removed at approximately equal rates. The compound with the highest assimilation efficiency was glucose (90.4%), but all compounds were incorporated with efficiencies of > 75%. Incorporation by epiphytes on the artificial substratum was greater than uptake by epiphytes on eelgrass. The leaves of Zostera also accumulated radioactive material, but at low rates, and when combined with uptake by the epiphytic community, resulted in average turnover times for the tested compounds of < 7 h. Artificial epiphyte communities had similar turnover times. Kinetic analysis showed no saturation effect, with uptake being linear for the concentrations of substrata tested. We hypothesize that heterotrophic epiphytes are potentially a significant source of new particulate matter in estuarine food webs, and that the microbial communities play a significant role in seagrass carbon cycles. 相似文献
20.
The unusual appearance of a commensal eelgrass limpet [Tectura depicta (Berry)] from southern California at high density (up to 10 shoot–1) has coincided with the catastrophic decline of a subtidal Zostera marina L. meadow in Monterey Bay, California. Some commensal limpets graze the chloroplast-rich epidermis of eelgrass leaves, but were not known to affect seagrass growth or productivity. We evaluated the effect on eelgrass productivity of grazing by limpets maintained at natural densities (8±2 shoot–1) in a natural light mesocosm for 45 days. Growth rates, carbon reserves, root proliferation and net photosynthesis of grazed plants were 50–80% below those of ungrazed plants, but biomass-specific respiration was unaffected. The daily period of irradiance-saturated photosynthesis (H
sat) needed to maintain positive carbon balance in grazed plants approached 13.5 h, compared with 5–6 h for ungrazed plants. The amount of carbon allocated to roots of ungrazed plants was 800% higher than for grazed plants. By grazing the chlorophyll-rich epidermis, T. depicta induced carbon limitation in eelgrass growing in an other-wise light-replete environment. Continued northward movement of T. depicta, may have significant impacts on eelgrass production and population dynamics in the northeast Pacific, even thought this limpet consumes very little plant biomass. This interaction is a dramatic example of top-down control (grazing/predation) of eelgrass productivity and survival operating via a bottom-up mechanism (photosynthesis limitation). 相似文献