首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
We developed a plasma recycling dialysis (PRD) system based on plasma exchange (PE). In this system, rapid reduction of toxic substances and restitution of deficient essential substances are performed by PE, and subsequent blood purification is performed by dialysis between separated plasma recycled over a purification device and the patient's blood across the membrane of the plasma separator. This study was performed to demonstrate the safety and efficacy of this system. Hyperbilirubinemia was induced by ligating the bile duct in pigs, and 7 days later, only PE for 2 h (group PE) or PE for 2 h followed by PRD for 6 h (group PE + PRD) was performed. The separated plasma was recycled over anion-exchange resin through the extra fiber space of the plasma separator. The safety and efficacy of this system were evaluated based on the values of hemodynamic and laboratory parameters. Transfer from PE to PRD was completed in a few minutes. The hemodynamic status and blood cells counts were stable and hemolysis was not observed during the procedure. In the PE + PRD group, the concentrations of total bile acids continuously decreased (pretreatment, 155.5 +/- 40.6 microM; 2 h [end of PE], 76.1 +/- 14.4 microM; 8 h [end of PRD], 25.8 +/- 9.1 microM) and the value was significantly lower than in the PE group after 6 h. The total bilirubin also continuously decreased during PRD (pretreatment, 55.3 +/- 11.5 microM; 2 h [end of PE], 33.8 +/- 8.4 microM; 8 h [end of PRD], 18.6 +/- 7.7 microM) and was significantly lower than in the PE group after 4 h. No significant change was observed in other laboratory values. This PE-based PRD system allowed a swift transfer from PE to sorbent-based blood purification. The safety of this system was demonstrated and the removal of toxic substances was significant. This study confirmed the clinical utility of this system as a platform for artificial liver support.  相似文献   

2.
We report a case of right heart failure (RHF) and sepsis with liver insufficiency in a 70-year-old patient after coronary artery bypass graft surgery. Three hours after surgery the patient suddenly developed therapy refractory cardiac arrest caused by RHF. He had to have emergency surgery, under which the graft to the right coronary artery was revised and a right ventricular assist device was implanted. Heart function recovered and the assist device was explanted on day 1 after surgery. Thoracic closure was performed on day 5 after surgery. The patient went into septic shock on day 11. Liver dysfunction developed postoperatively and worsened the course of sepsis. Therefore, MARS (molecular adsorbents recirculating system) dialysis was performed once on day 20 after surgery. Liver function improved after MARS therapy and the patient recovered from sepsis. On day 46 the patient was transferred from the ICU of another hospital to one of the peripheral wards, to be finally discharged on day 67.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号