首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
无线移动网中呼叫接纳控制模型分析   总被引:6,自引:1,他引:6  
张雪 《通信学报》2005,26(8):99-109
新一代无线网应该能够同时支持传统的数据业务和实时交互式多媒体业务,并能够为用户提供QoS保证。在无线网中提供QoS保证,呼叫接纳控制扮演着重要的角色。对已有的呼叫接纳控制方面的研究成果进行了归纳、总结和分析,以期得出适合于无线移动多媒体网络的呼叫接纳控制模型。为适应当前的多媒体应用,侧重于对和适应性带宽分配相结合的接纳控制模型的分析。另外,介绍了与价格机制相结合的接纳控制模型,经济学概念的引入,为我们解决问题提供了一种新的视角。  相似文献   

2.
A new probabilistic call admission control scheme is proposed for multiservice wireless networks. The new scheme gradually suppresses the admission rate of the new calls and of the calls of each service class (SC) supported considering their priorities independently. The scheme is examined both for a single SC and for multiple SCs under general conditions. The analysis employs Markov chain theory and yields analytical expressions for the call blocking probabilities. The proposed analytical method was validated via simulations employing different distributions for the channel holding time; the simulations demonstrated the accuracy of the proposed framework.  相似文献   

3.
Wireless Broadband Cognitive Networks (WBCN) are new trend to better utilization of spectrum and resources. However, in multiservice WBCN networks, call admission control (CAC) is a challenging point to effectively control different traffic loads and prevent the network from being overloaded and thus provide promised quality of service. In this paper, we propose a CAC framework and formulate it as an optimization problem, where the demands of both WBCN service providers and cognitive subscribers are taken into account. To solve the optimization problem, we developed an opportunistic multivariate CAC algorithm based on a joint optimization of utility, weighted fairness, and greedy revenue algorithms. Extensive simulation results show that, the proposed call admission control framework can meet the expectations of both service providers and subscribers in wireless broadband cognitive networks.  相似文献   

4.
无线网络中由于用户的移动性、频谱资源的缺乏以及信道的衰落,使无线网络的服务质量的供给成为一个日益严峻的问题。呼叫允许控制(CAC)是无线资源管理中的重要组成部分,是一种保证服务质量和网络资源利用率的重要机制。总结了CAC领域的研究成果,对蜂窝无线通信网络的CAC方案进行了分析,指出了目前CAC研究中存在的问题,并探讨了今后的研究方向。  相似文献   

5.
Call admission control is one of the key elements in ensuring the quality of service in mobile wireless networks. The traditional trunk reservation policy and its numerous variants give preferential treatment to the handoff calls over new arrivals by reserving a number of radio channels exclusively for handoffs. Such schemes, however, cannot adapt to changes in traffic pattern due to the static nature. This paper introduces a novel stable dynamic call admission control mechanism (SDCA), which can maximize the radio channel utilization subject to a predetermined bound on the call dropping probability. The novelties of the proposed mechanism are: (1) it is adaptive to wide range of system parameters and traffic conditions due to its dynamic nature; (2) the control is stable under overloading traffic conditions, thus can effectively deal with sudden traffic surges; (3) the admission policy is stochastic, thus spreading new arrivals evenly over a control period, and resulting in more effective and accurate control; and (4) the model takes into account the effects of limited channel capacity and time dependence on the call dropping probability, and the influences from nearest and next-nearest neighboring cells, which greatly improve the control precision. In addition, we introduce local control algorithms based on strictly local estimations of the needed traffic parameters, without requiring the status information exchange among different cells, which makes it very appealing in actual implementation. Most of the computational complexities lie in off-line precalculations, except for the nonlinear equation of the acceptance ratio, in which a coarse-grain numerical integration is shown to be sufficient for stochastic control. Extensive simulation results show that our scheme steadily satisfies the hard constraint on call dropping probability while maintaining a high channel throughput  相似文献   

6.
无线/移动网络中自适应的接纳控制算法及性能分析   总被引:9,自引:0,他引:9  
姜爱全  赵阿群 《通信学报》2004,25(6):147-156
无线/移动网络中重要的连接级QoS性能指标包括新连接请求阻塞率(CBP)、切换连接请求丢弃率(HDP)等。其中,更不希望因切换连接请求的丢弃而导致服务的终止。为降低HDP,通常采用资源预留方案。但这种方案导致CBP较高、资源利用率低。本文针对自适应的多媒体应用带宽可以动态调整的特点,研究无线/移动网络中多优先级服务自适应的接纳控制机制,提出一个自适应的接纳控制算法,对其QoS性能进行分析。  相似文献   

7.
Improving call admission policies in wireless networks   总被引:3,自引:0,他引:3  
Ho  Chi‐Jui  Lea  Chin‐Tau 《Wireless Networks》1999,5(4):257-265
It is well known that the call admission policy can have a big impact on the performance of a wireless network. However, the nonlinear dependence of new calls and handoff calls makes the search for a better call admission policy – in terms of effective utilization – a difficult task. Many studies on optimal policies have not taken the correct dependence into consideration. As a result, the reported gains in those studies cannot be confirmed in a real network. In this paper we develop a solution to the problem of finding better call admission policies. The technique consists of three components. First, we search for the policy in an approximate reducedcomplexity model. Second, we modify the Linear Programming technique for the inherently nonlinear policysearch problem. Third, we verify the performance of the found policy in the exact, highcomplexity, analytical model. The results shown in the paper clearly demonstrate the effectiveness of the proposed technique.  相似文献   

8.
A simple connection control system for multiservice cellular wireless networks is presented. Mobile stations are classified depending on the traffic they generate (e.g., voice, data). Within each class, two subclasses are also identified: stations which have originated inside the cell and stations which come from adjacent cells. The connection control mechanism is carried out by considering a number of priorities among the various classes and their subclasses. It works on two levels: static and dynamic. The static level looks at packet-level quality of service (QoS), such as cell loss and delay, while the dynamic level takes care of connection dynamics and allows the load of the system to be driven with respect to the various subclasses. Results that illustrate the performance of this control mechanism are presented.  相似文献   

9.
An efficient call admission control scheme for handling heterogeneous services in wireless ATM networks is proposed. Quality-of-service provisioning of jitter bounds for constant bit rate traffic and delay bounds for variable bit rate traffic is used in the CAC scheme to guarantee predefined QoS levels for all traffic classes. To reduce the forced handoff call dropping rate, the CAC scheme gives handoff calls a higher priority than new calls by reserving an appropriate amount of resources for potential handoff calls. Resource reservation in the CAC scheme makes use of user mobility information to ensure efficient resource utilization. Simulation results show that the proposed CAC scheme can achieve both low handoff call dropping rate and high resource utilization  相似文献   

10.
The efficiency of call admission control (CAC) schemes in multiclass wireless networks should be evaluated not only with regard to the call blocking probability (CBP) achieved for every service class (SC) supported but also with regard to quality of service (QoS) and network efficiency criteria. In this article, four CAC schemes offering priority to SCs of advanced QoS requirements, based on guard channel policy, are studied and evaluated taking into account fairness and throughput criteria in addition to CBP. For the performance evaluation of the proposed CAC schemes and to examine fairness issues, two fairness indices are introduced along with a throughput metric. The analytical results, validated through extensive simulations, indicate that by appropriate selection of the CAC parameters satisfactory fairness and throughput are achieved while achieving low CBP.  相似文献   

11.
Hai  Xiaohua  Deying  C.H.   《Ad hoc Networks》2005,3(6):689-701
This paper first studied the timeslot assignment problem in time division multiple access/code division multiple access (TDMA/CDMA) wireless ad hoc networks. Given a path P, we prove that a timeslot assignment providing one unit of bandwidth on P can be found in O(P) time if such an assignment exists. The results have been extended to the case that P can provide two units of bandwidth. Based on the timeslot assignment for the special cases, an efficient slot assignment algorithm with O(P2k) is proposed for general cases, where k is the number of slots in a TDMA frame. Then, the timeslot assignment algorithm is integrated into a quality of service (QoS) call admission scheme for QoS call requests. Extensive simulations are conducted and the results have demonstrated the superior performance of our method.  相似文献   

12.
Dynamic call admission control in ATM networks   总被引:5,自引:0,他引:5  
The authors present dynamic call admission control using the distribution of the number of cells arriving during the fixed interval. This distribution is estimated from the measured number of cells arriving at the output buffer during the fixed interval and traffic parameters specified by users. Call acceptance is decided on the basis of online evaluation of the upper bound of cell loss probability, derived from the estimated distribution of the number of calls arriving. QOS (quality of service) standards can be guaranteed using this control when there is no estimation error. The control mechanism is effective when the number of call classes is large. It tolerates loose bandwidth enforcement and loose policing control, and dispenses with modeling of the arrival processes. Numerical examples demonstrate the effectiveness of this control, and implementation is also discussed  相似文献   

13.
This paper addresses the call admission control problem for multiservice wireless code division multiple access (CDMA) cellular systems when the physical layer channel and receiver structure at the base station are taken into account. The call admission problem is formulated as a semi-Markov decision process with constraints on the blocking probabilities and signal-to-interference ratio (SIR). By using previous results in large random matrices, the SIR constraints incorporate linear multiuser detectors and fading channels. We show that the optimal call admission policy can be computed via a linear programming-based algorithm  相似文献   

14.
On call admission control in DS/CDMA cellular networks   总被引:3,自引:0,他引:3  
Analytical models are proposed for various direct sequence code-division multiple-access (DS/CDMA) call admission control schemes. Many mathematical call admission models for DS/CDMA cellular networks have been proposed. However, they have shortcomings. First, by ignoring the stochastic traffic load variation or call blocking effect, they failed to sufficiently characterize the second moment of other-cell interference. This leads to inaccurate analysis of a real network. Second, the optimal control parameters were often obtained through an exhaustive search which was very time consuming. Finally, the estimation of system capacity in previous models was obtained by using a simple one-slope path-loss propagation model. However, it is well known that a two-slope path loss propagation model is needed in a line-of-sight (LOS) microcell propagation environment. We propose an analytical model for call admission to overcome these drawbacks. In addition, we combine a modified linear programming technique with the built analytical model to find better call admission control schemes for a DS/CDMA cellular network  相似文献   

15.
Many wireless access systems have been developed recently to support users mobility and ubiquitous communication. Nevertheless, these systems always work independently and cannot simultaneously serve users properly. In this paper, we aim to integrate IPv6-based wireless access systems and propose a coordinated call admission control mechanism to utilize the total bandwidth of these systems to minimize the call blocking probabilities, especially the handoff call dropping probabilities. First, we propose an integrated hierarchical wireless architecture over IPv6-based networks to combine the wireless access systems including cellular systems (second-generation, General Packet Radio Service, or third-generation), IEEE 802.11 a/b/g WLAN, and Bluetooth. In the proposed architecture, mobile user can request a call with quality-of-service (QoS) requirements by any wireless network interfaces that can be accessed. When the proposed coordinated call admission control (CCAC) mechanism receives a request, it takes the QoS requirements of the incoming call and the available and reserved bandwidth of this wireless system into consideration to accept or reject this request. Besides, the mechanism can coordinate with other wireless systems dynamically to adjust the bandwidth reserved for handoff calls at each wireless system in this architecture so as to reduce the call blocking probabilities. Once the call is admitted, the mobile user is able to access heterogeneous wireless access networks via multiple interfaces simultaneously. Finally, we evaluate this system to show that the CCAC on the proposed architecture outperforms other mechanisms proposed before.  相似文献   

16.
Resource reservation or the other prioritization strategies adopted by Call Admission Control (CAC) schemes in wireless networks lead to unfair resource allocation to users belonging to different service classes (SCs) due to high divergence among the respective call blocking probabilities (CBPs). In this paper, we propose dynamic optimization of probabilistic CAC (P‐CAC) schemes to assure CAC fairness among users of different SCs in wireless networks. The approach is based on users utility combined with fairness optimization, aiming at dynamically determining the probability value in the P‐CAC scheme. This optimal probability is adjusted to network ongoing traffic, CBPs of each SC, prioritization levels characterizing the SCs supported, and the users risk aversion, which reflects their behavior toward the perceived QoS. The existence and uniqueness of the optimal probability that leads to absolute fairness among the users of a wireless network are proven. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
多业务无线蜂窝移动通信系统的一种呼叫允许控制策略   总被引:6,自引:0,他引:6  
朱立东  吴诗其 《通信学报》2001,22(11):11-21
第三代移动通信系统要求支持宽带多媒体业务,如话音、视频、数据等多种业务,不同业务有不同的QoS要求。本文提出的多业务无线蜂窝移动通信系统中一种基于QoS的呼收允许控制策略,对不同业务的切换呼叫给予不同的优先权。本文分析了两种呼叫允许控制(CAC)算法,一种是各种业务的切控呼叫无缓冲器,不进入排队系统;另一种是各种业务的切换呼叫设置有缓冲器,进入排除系统,并且话音、视频业务的切切呼叫比数据业务的切换呼叫有更高的优先权,系统的空闲信道应首先分配给话音、视频业务的切换呼叫,再分配给数据业务的切换呼叫。在分析两种CAC算法的呼叫阻塞概率、切换失败概率以及系统吞吐量的基础上,给出了计算机仿真结果。  相似文献   

18.
On optimal call admission control in cellular networks   总被引:10,自引:0,他引:10  
Two important Quality-of-Service (QoS) measures for current cellular networks are the fractions of new and handoff “calls” that are blocked due to unavailability of “channels” (radio and/or computing resources). Based on these QoS measures, we derive optimal admission control policies for three problems: minimizing a linear objective function of the new and handoff call blocking probabilities (MINOBJ), minimizing the new call blocking probability with a hard constraint on the handoff call blocking probability (MINBLOCK) and minimizing the number of channels with hard constraints on both of the blocking probabilities (MINC). We show that the well-known Guard Channel policy is optimal for the MINOBJ problem, while a new Fractional Guard Channel policy is optimal for the MINBLOCK and MINC problems. The Guard Channel policy reserves a set of channels for handoff calls while the Fractional Guard Channel policy effectively reserves a non-integral number of guard channels for handoff calls by rejecting new calls with some probability that depends on the current channel occupancy. It is also shown that the Fractional policy results in significant savings (20-50\%) in the new call blocking probability for the MINBLOCK problem and provides some, though small, gains over the Guard Channel policy for the MINC problem. Further, we also develop computationally inexpensive algorithms for the determination of the parameters for the optimal policies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Call admission control (CAC) is a mechanism used in networks to administer quality of service (QoS). Whereas the CAC problem in time-division multiple access (TDMA)-based cellular networks is simply related to the number of physical channels available in the network, it is strongly related to the physical layer performance in code-division multiple access (CDMA) networks since the multi-access interference in them is a function of the number of users and is a limiting factor in ensuring QoS. In this article, the CAC issues in multimedia DS-CDMA systems are reviewed by illustrating the basic principles underlying various schemes that have been proposed progressively from the simplest to the complex. The article also introduces SIR as a measure of QoS and describes the relatively simple schemes to administer CAC. The expression for SIR resulting from linear minimum mean-squared error processing is also presented. This article illustrates how CAC for multiple class service can be casted into an optimality framework and then discuss the recent work addressing self-similar multiple access interference.  相似文献   

20.
无线移动通信系统中的呼叫接入控制   总被引:7,自引:0,他引:7  
龚文斌  甘仲民 《通信学报》2003,24(8):135-144
呼叫接入控制是无线移动通信系统中无线资源管理的重要部分,它直接关系到系统中用户服务质量是否能够得到保证,同时呼叫接入控制算法的有效性决定了系统资源的利用效率。文中综述了各种呼叫接入控制算法及其特点,并指出在无线移动通信系统中它们的重要性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号