首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 624 毫秒
1.
LiNi0.5Mn1.5O4/Li4Ti5O12电池体系的性能研究   总被引:1,自引:0,他引:1  
采用高温固相法合成了锂离子电池用正极材料LiNi0.5Mn1.5O4和负极材料Li4Ti5O12。通过XRD和SEM分析,并借恒电流充放电和循环伏安法测试了LiNi0.5Mn1.5O4/Li4Ti5O12电池体系的电化学性能。结果表明:LiNi0.5Mn1.5O4和Li4Ti5O12均为尖晶石结构,LiNi0.5Mn1.5O4/Li4Ti5O12电池具有良好的充放电循环可逆性,以0.5C倍率充放电,首次放电比容量可达124.31mAh·g–1,充放电循环50次后,放电比容量在116mAh·g–1以上,容量保持率为93.32%。  相似文献   

2.
采用湿法球磨制备了锂离子电池用混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4。通过X射线衍射(XRD)和扫描电镜(SEM)表征了材料的结构和形貌,采用恒流充放电测试、循环伏安测试(CV)和电化学阻抗谱测试(EIS)方法研究了混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4的电化学性能。结果表明:混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4的晶体结构完好,碳包覆的纳米LiFePO4颗粒较好地包覆在LiNi0.5Co0.2Mn0.3O2表面。含质量分数15% LiFePO4的混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4电化学性能优良,0.2C首次充放电比容量为181.40 mAh?g–1,首次充放电效率为90.79%;1.0C循环50次后放电比容量为169.89 mAh?g–1,容量保持率为97.80%;3.0C循环5次后的放电比容量为162.22 mAh?g–1,容量保持率仍有89.43%;60 ℃高温存储7 d后,容量保持率和容量恢复率分别为86.48%和97.32%。  相似文献   

3.
采用高温固相法合成了锂离子电池正极材料LiMn2O4微粉,并采用热裂解法在其表面进行了碳包覆。通过XRD、SEM、TGA分析和充放电测试研究了包覆后粉体的晶体结构、形貌、包覆量和电化学性能。测试结果表明:合成的碳包覆LiMn2O4材料为单一的尖晶石型结构,碳包覆有效降低了Jahn-Teller畸变和锰在电解液中的溶解,提高了材料的电化学性能。以0.1C倍率充放电时碳包覆LiMn2O4的初始充放电比容量为123.1 mAh/g,循环20次后容量保持率为96%。  相似文献   

4.
以Li Ni1/3Co1/3Mn1/3O2为正极,石墨为负极;采用卷绕和叠片工艺制备理论容量为300 m Ah可弯曲锂离子电池。通过测试首次充放电效率、循环寿命和内阻等方法对电池电化学性能进行研究。实验结果表明:卷绕式单颗锂离子电池首次放电容量为67.0 m Ah(0.1C倍率),首次充放电效率为89.33%,并联成内阻为48 mΩ,循环300周后容量保持率为85.35%。叠片式电池首次放电容量为400.8 m Ah(0.1C倍率),首次充放电效率为93.49%,内阻为45 mΩ,循环300周后容量保持率为92.68%。  相似文献   

5.
以硝酸盐为原料,用sol-gel法合成锂离子电池正极材料LiNi1-xCoxO2,采用XRD、SEM和电化学测试等方法对材料的物理化学性质以及电化学性能进行表征。结果表明,经过Co掺杂后,材料具有较高的初始放电比容量和较好循环性能。在750℃下合成的LiNi0.8Co0.2O2,在3.0~4.2 V 0.2 C下经恒电流充放电测试,其首次放电容量为170.40mAh.g–1,经过30次充放电循环后放电容量为149.86 mAh.g–1,可逆容量的保持率为89.95%。  相似文献   

6.
通过改进马弗炉结构,在空气气氛下合成了LiNi0.7Co0.3O2锂离子二次电池正极材料。利用XRD、SEM和循环充放电测试等手段,研究了材料结构与电化学性能之间的关系。实验电池以C/3的电流倍率在2.7~4.2V进行恒流充放电循环,电池首次充电比容量与放电比容量分别为181mAh/g和157mAh/g,库仑效率为86.7%。经过15次循环后,放电比容量趋于稳定,库仑效率保持在98%以上。循环40次,放电比容量为122mAh/g。  相似文献   

7.
应用纳米微晶TiO2为原料,通过高温固相反应合成了具有尖晶石结构的锂钛复合氧化物Li4Ti5O12,该材料的首次嵌脱锂效率可达91.9%,10 mA/g电流密度下的可逆嵌锂容量为102 mAh/g。将其制成嵌锂电极后与活性炭电极构成新型的Li4Ti5O12/AC非对称电容体系。测试结果表明:在80 mA/g条件下,其双电极比电容为41.6 F/g,能量密度为采用相同电解液体系的AC/AC双电层电容的4.6倍,充放电效率达95.8%,且大电流性能及循环性能良好。  相似文献   

8.
介绍了锂离子电池负极材料Li4Ti5O12的优点、晶体结构、嵌锂机理和电化学特性。对Li4Ti5O12的固相法、sol-gel法以及其他各种制备方法进行了讨论。对其一元掺杂、二元掺杂、金属氧化物包覆及有机物碳化后包覆等掺杂改性的研究结果进行了总结和评述。对Li4Ti5O12的发展应用前景进行了展望。  相似文献   

9.
以酚醛树脂为碳源,通过高温热解法成功制备了硅碳复合材料(Si/C)。采用热重分析、X射线衍射和扫描电镜方法表征材料的组成、结构和形貌,采用恒流充放电测试、循环伏安法和交流阻抗谱探究了原料配比对硅碳复合材料电化学性能的影响。结果表明,纳米硅与酚醛树脂质量比为1∶1时,纳米硅表面被热解碳均匀包覆,有效提高了复合材料的电化学储能性能。这是因为碳包覆层有助于提高材料的导电率,并缓解硅在放电过程中的体积膨胀。测试发现材料在0.1C倍率下首次充放电比容量为1546 mAh/g;循环50次后可逆比容量为1443 mAh/g,容量保持率达93%;在1C倍率下仍具有1224 mAh/g的可逆比容量。  相似文献   

10.
采用固相法制备了LiFe0.8Mn0.2–xLaxPO4/C(x=0,0.025,0.050)复合材料。通过XRD、SEM和恒流充放电测试对材料的晶体结构、形貌和电化学性能进行研究。结果表明少量的La掺入并未影响到LiFe0.8Mn0.2PO4/C的晶体结构,但显著改善了材料的电化学性能。LiFe0.8Mn0.175La0.025PO4/C在0.1C,0.5C,1C,2C和5C倍率下的首次放电比容量分别为154.7,145.0,135.3,125.4和118.1 mAh/g,此外,材料还表现出较好的循环性能,LiFe0.8Mn0.175La0.025PO4/C在1C倍率下循环30次后,容量保持率为99.5%。  相似文献   

11.
在固相合成的Li4Ti5O12中添加SnO2进行改性。用循环伏安、交流阻抗谱、恒流充放电技术研究了SnO2的添加对材料的电化学性能影响。试验显示,材料改性后,当以金属锂为对电极时,首次放电容量达400.02mAh·g–1,首次库仑效率为50%;当以LiCoO2为对电极时,首次放电容量为166.27mAh·g–1,经过15次循环后,容量衰减仅为3.3%。改性后的电极材料不但提高了容量,而且能够保持原有材料的高循环性能,可用作锂离子电池的负极材料。  相似文献   

12.
冯全源 《电子器件》2002,25(2):136-138
采用普通陶瓷工艺,并加入微量杂质:Bi2O3,NiO,Co2O3和MnCO3,且利用氧气氛烧结制备了目前尚未见报道的锂铁氧体Li0.625Zn0.1Ti0.25Sn0.1Fe1.925O4。该材料具有较高的居里温度和较低的介电损耗。利用Pierre weiss分子场理论,自发磁化理论对Li0.625Zn0.1Ti0.25Sn0.1Fe1.925O4锂铁氧体的比饱和磁化强度随温度的变化进行了理论计算,结果表明,铁,钛离子取代了B位的铁离子,而锌取代了A位的铁离子。  相似文献   

13.
锂离子充电电池(LIBs)在汽车和移动通信设备领域有着广泛的应用前途,成为最近的研究热点。尖晶石Li4Ti5O12因其在充放电过程中优异的可逆性、结构稳定性、安全性和高锂离子迁移率,已经成为了一种很有前途的高容量锂离子电池负极材料。分别从掺杂改性、表面改性和纳米结构等几个方面综述了Li4Ti5O12的改性研究进展。  相似文献   

14.
在含有Li+、Co2+、Ni2+、Mn2+离子的混合溶液中加入(NH4)2CO3作沉淀剂,通过一步共沉淀反应得到含有四种金属离子的混合沉淀前驱体。前驱体经烘干,研磨后在不同温度(700~1 000 ℃)及不同时间(6~24 h)条件下进行烧结,即得到LiNi1/3Co1/3Mn1/3O2粉体。分别通过X射线衍射(XRD)、扫描电镜(SEM)及循环伏安(CV)、交流阻抗对制备粉体的微结构进行表征和对样品的电化学性能进行测试。结果表明:获得的LiNi1/3Co1/3Mn1/3O2粉体为-NaFeO2层状结构,颗粒分布均匀,放电比电容高,阻抗小。其中在900 ℃下烧结12 h所得的LiNi1/3Co1/3Mn1/3O2粉体电化学性能最优。当电压窗口在(0~1.4)Vvs.SCE、扫描速度为5 mVs-1、电解液为1 molL-1 Li2SO4溶液时,其比容量可达399.46 Fg-1;并且其阻抗也最小。  相似文献   

15.
以Li2CO3为锂源、Fe2O3为铁源、Si(OCH2CH3)4为硅源、羟乙基纤维素和蔗糖分别为碳源,采用碳热还原法制备了Li2FeSiO4/C锂离子电池复合正极材料,考察了羟乙基纤维素和蔗糖分别作为碳源对合成的Li2FeSiO4/C电化学性能的影响。结果表明:当烧结温度为600℃、烧结时间为10 h时,由羟乙基纤维素作为碳源制备的Li2FeSiO4/C样品在1.5~4.7 V、0.2C和20℃时的首次放电比容量为113.6 mAh/g,20次循环后放电比容量仍保持在102.3 mAh/g。较之蔗糖碳源样品,颗粒更小、分布更均匀,其电荷转移阻抗减小了80%、锂离子扩散系数增加了20%。  相似文献   

16.
Electrolyte additives play important roles in suppressing lithium dendrite growth and improving the electrochemical performance of long-life lithium metal batteries (LMBs), however, it is still challenging to design individual additive for adjusting the solid electrolyte interphase (SEI) components and changing lithium ion solvation sheath in the electrolyte at the same time for optimizing electrochemical performance. Herein, alkyl-triphenyl-phosphonium bromides (alkyl-TPPB) are designed as the electrolyte additive to enhance the stability of metallic Li anode under the guidance of multi-factor principle for electrolyte additive molecule design (EDMD). Both alkyl-TPP cations and Br anions produce positive influences on suppressing Li dendrite growth and stabilizing the unstable interphase between metallic Li anode/electrolyte. As expected, the optimized solvation sheath structure, and the stable SEI suppress Li dendrite growth. As a result, the Li||Li4Ti5O12 cell reveals a long stable life over 1000 cycles with high Coulombic efficiency (99.9%). This work provides an insight on stabilizing SEI and optimizing solvation sheath structure with novel approach to develop long-term stability and safety LMBs.  相似文献   

17.
以Li2CO3和FePO4·2H2O为原料,葡萄糖为碳源,同时添加偶联剂作分散剂及杂质源来合成LiFePO4正极材料,研究了偶联剂的种类及添加量对所制LiFeO4材料性能及分散效果的影响.结果表明:添加TC-Wt钛酸酯偶联剂且质量分数为3.0%时,所制LiFeO4具有更好的电化学性能,其0.1 C,0.5 C,1.0 ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号