首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The work concerns the monitoring of the edge condition based on acoustic emission (AE) signals. The tool edge condition was determined by the wear width on the flank face. The processed material was an aluminum-ceramic composite containing 10% SiC. A carbide milling cutter with a diamond coating was used as the tool. Based on the AE signals, appropriate measures were developed that were correlated with the edge condition. Machine learning methods were used to assess the milling cutter's degree of wear based on AE signals. The applied approach using a decision tree allowed the prediction error of the tool condition class with a value below 6%. The method was also compared with other machine learning methods such as neural networks and the k-nearest neighbor algorithm.  相似文献   

2.
Many aspects of the interactions between cutting tools, workpiece material and the chips formed during machining that affect the wear and failure of the tool are not fully understood. The analysis of acoustic emission signals generated during machining has been proposed as a technique for studying both the fundamentals of the cutting process and tool wear and as a methodology for detecting tool wear and failure on line. A brief review of the theory of acoustic emission is presented. Acoustic emission data from reduced contact length machining experiments and tool flank wear tests are analyzed using distribution moments. The analysis shows that the skew and kurtosis of an assumed β distribution for the r.m.s. acoustic emission signal are sensitive to both the stick-slip transition for chip contact along the tool rake face and progressive tool wear on the flank of the cutting tool.  相似文献   

3.
4.
X.D. Fang  I.S. Jawahir 《Wear》1993,160(2):243-252
Chip breakability plays an essential role in automated machining systems. This paper presents an experimental investigation of the effects of progressive tool wear and the resulting formation of the tool restricted contact on chip breakability in a turning operation. Six parameters of tool wear, namely, major flank wear (VB), crater wear depth (KT), crater wear length (KK), crater wear width (KB), wear retract of cutting edge (KS) and nose wear (N), are shown to contribute to the variations of chip breakability with tool wear progression. The results show that the chip breakability varies significantly with tool wear progression, especially with the combined crater and flank wear progression, and contributes to the development of a restricted rake face land, making the tool behave like a restricted contact grooved tool. The chip curling and breaking action is largely influenced by the nature and magnitude of the restricted contact and the groove profile being developed on the tool face. The results presented in this paper are also intended to provide guidelines for designing effective chip grooves on the tool face.  相似文献   

5.
Fe-based amorphous alloy, a new-type material, was developed as a special-purpose welt overlay for remanufacture. It was deposited on the worn-out part for resuming and upgrading part performance. The microstructure characteristics of the overlay was characterized, including microstructure, phase composition, thermostability, and microhardness. In order to get a comprehensive insight to the machining process of amorphous overlay, this paper presents an experimental investigation into the effect of various machining parameters and tool geometry (Edge) on the surface roughness, tool wear, chip morphology, and surface damage. Comparing larger rake angle of 15°and smaller nose radius of 0.4 mm with 5° and 0.8 mm at the same cutting parameters, we found that larger rake angle of 15° and smaller nose radius of 0.4 mm increased the R a surface roughness parameter. In the tests, crater wear was not observed, and the friction and wear on the minor cutting edge wear were heavy due to the spring back of the machined surface. In brief,abrasion, adhesion, fatigue, and chipping are the main wear mechanism. As the feed rate reduced and the depth of cut increased (from feed rate?=?0.06 mm/rev and depth of cut?=?0.3 mm to feed rate?=?0.09 mm/rev and depth of cut?=?0.2 mm), a number of physical changes occurred in the chip including reduced distance between serrations, increased shear band angle, and changed chip morphology from spiral to ribbon shape. The results show that strain and strain rate rises in the chips’ inside with the increase in cutting temperature. When the thermal softening exceeded strain hardening, the shear resistance decreased rapidly. Thus, the free surface of the chip presents the nodular and lamella structure. It was noted that specimens generated by larger rake angle of 15° and smaller nose radius of 0.4 mm showed poor surface roughness as well as extensive surface damage.  相似文献   

6.
The milling tool wear monitoring using the acoustic spectrum   总被引:2,自引:2,他引:0  
In the present study, the tool wear has been monitored using the cutting sound acoustic spectrum and the linear predictive cepstrum coefficient (LPCC) of the milling sound signal would be extracted to be used as the acoustic spectrum characteristic parameters. The relationship between each order component of LPCC and the flank wear of the tools was analysed. The experimental results show that there are clear characteristic components in the milling sound signal related to the tool wear. It has been found that the characteristic components associated with tool wear are mainly concentrated in the sixth-, seventh- and eighth-order components of LPCC.  相似文献   

7.
分析了Inconel718合金拉削时,速度、齿升量、拉刀前角对拉削表面加工硬化的影响。试验结果表明,拉削表面加工硬化程度较大,是拉刀磨损的主要原因。  相似文献   

8.
9.
This work investigated the effects of different workpiece materials on chip formation and associated mechanisms in microcutting. The wavelet transformation technique was used to decompose acoustic emission (AE) signals generated from orthogonal micromilling of different workpiece materials. This allowed studying energy levels corresponding to deformation mechanisms. Resulting chip forms were characterised. The results indicated that the computed energies of decomposed frequency bands can be positivity correlated with chip morphology. The work provides significant and new knowledge on the utility and importance of AE signals in characterising chip formation in micromachining. Understanding chip formation mechanisms is important in managing the size effect in micromachining.  相似文献   

10.
Vibration analysis is widely used in machinery diagnosis, and wavelet transform and envelope analysis have also been implemented in many applications to monitor machinery condition. Envelope analysis is well known as a useful tool for the detection of rolling element bearing faults, and wavelet transform is used in research to detect faults in gearboxes. These are applied for the development of the condition monitoring system for early detection of the faults generated in several key components of machinery. Early detection of the faults is a very important factor for condition monitoring and a basic component to extend CBM (Condition-Based Maintenance) to PM (Prediction Maintenance). The AE (acoustic emission) sensor has a specific characteristic on the high sensitivity of the signal, high frequency and low energy. Recently, AE technique has been applied in some studies for the early detection of machine fault. In this paper, a signal processing method for AE signal by envelope analysis with discrete wavelet transforms is proposed. Through the 15 days test using AE sensor, misalignment and bearing faults were observed and early fault stage was detected. Also, in order to find the advantage of the proposed signal processing method, the result was compared to that of the traditional envelope analysis and the accelerometer signal.  相似文献   

11.
The corrosion and corrosive wear resistance of 6082 wrought aluminum alloy against 410 stainless steel counterface in 0.01 M NaCl solution with different concentrations of sodium molybdate dihydrate solution (0, 0.01, 0.1 and 0.5 M), were studied. The experimental results indicated that the increase in sodium molybdate dihydrate acted as an inhibitor in the 0.01 M NaCl solution resulting in a significant decrease in the corrosion current, meaning improved corrosion resistance. During the corrosive wear under free corrosion conditions of 6082 aluminum alloy specimens against 410 stainless steel counterface, the addition of sodium molybdate dihydrate inhibitor, leads to a decrease in friction coefficient of the examined pair of materials. The dominant wear mechanisms of the aluminum alloy were mainly observed to be plastic deformation and abrasion. These wear mechanisms coexisted with pitting corrosion phenomena, on the surface of this alloy.  相似文献   

12.
By adopting an equivalent geometry model of chip, a finite element model was developed to study the mechanism of chip formation during high-speed milling of alloy cast iron. Several key technologies such as material constitutive model, friction model, chip separation criteria, chip damage criteria, heat dissipation, and transfer were implemented to improve the accuracy of finite element simulation. Saw-tooth chip of alloy cast iron was observed. The chip shape and cutting force agreed well with experimental results. The simulation results show that the maximum cutting temperature produced with appearance of saw-tooth chip crack, and it is located on the chip-tool contact surface. The saw-tooth chip is caused by double actions of thermoplastic instability and plastic instability. The chip saw-tooth degree decreases when increasing the rotating speed, while it increases when increasing the feed speed. This work provides a useful understanding for chip formation process and helps to optimize machining parameters and process of high-speed milling of alloy cast iron.  相似文献   

13.
According to the structure-borne acoustic emission (AE) signals detected in pulsed gas metal arc welding (P-GMAW), the effects of welding heat input and pulses to the microstructures and the characteristics of AE signals were analyzed. The experiment results showed that the welding arc was the source of most vibration energy in GMAW. The increase of welding heat input caused the growth of grain in weld and the increase of average AE count. The mean grain size was increased with the average AE count increasing, which was attributable to the welding heat input. Both the welding arc and the pulses used in welding were the source of vibration energy in P-GMAW. The mean grain size decreased with the average AE count increasing, which was attributable to the pulses provide additional vibration energy to refine the grain structure. The welding heat input effect played a more important role than the pulses effect to the grain structure in P-GMAW.  相似文献   

14.
对金刚石刀具、涂层刀具及硬质合金刀具车削纯钒时刀具磨损形态及其磨损机理进行观察和分析.结果表明,在所选取条件下,不同刀具材料对工件材料切削时表现出的刀具磨损形态主要为前刀面磨损、后刀面磨损、微崩刃、剥落和粘结等.刀具的前刀面主要是沿切屑流出方向的沟槽形月牙洼磨损,而后刀面以粘结磨损为主.CD10刀具和H10非涂层刀具具有较佳的切削性能,而H13A非涂层刀具和GC1025涂层刀具不适于纯钒车削.  相似文献   

15.
Estimation of the operational properties of metal-cutting tools on the basis of acoustic emission is considered.  相似文献   

16.
为了研究钛合金Ti6Al4V切削过程中的切削力特性,采用硬质合金涂层和无涂层刀具进行了外圆干车削试验,提取切削力信号,通过研究切削力的静动态特性,揭示了切削力与切削速度、刀具材料、刀具磨损以及切屑形成的关系.结果表明:钛合金切削过程中,切削力的静态分量中径向力Fp最大,直接导致刀具后刀面磨损;随着切削速度的变化,切削力的变化是由刀具磨损、材料本身的特性等多方面因素综合作用的结果,切削力动态分量分形维数可用于刀具状态监控;锯齿形切屑的产生与切削力的高频变化有直接的关系,锯齿生成频率可以作为切削力动态分量频率的一个表征,选取适当的切削参数可以降低由于锯齿屑产生引起的切削力振动.  相似文献   

17.
Rotational fretting wear tests in a ball-on-flat configuration have been successfully realized on a special rotational fretting rig developed from an ultra-low-speed reciprocating rotational driver. The rotational fretting behavior of 7075 aluminum alloy against 52 100 steel was studied under different angular displacement amplitudes and normal loads. The results showed that both Ft?θ and Ft/Fn curves can be used to characterize the rotational fretting running behavior, which exhibited different curve shapes and variation trends in different fretting running regimes. The rotational fretting behavior of 7075 aluminum alloy was strongly dependent on the angular displacement amplitude, normal load and number of cycles. The wear of 7075 aluminum alloy was characterized by slight attrition in the partial slip regime, while a combination of delamination, abrasive and oxidative wear was found in the slip and mixed fretting regimes. The formation of a central bulge probably due to plastic flow was observed under gross slip condition of the rotational fretting mode.  相似文献   

18.
Chip formation, an important aspect of the high-speed cutting (HSC) mechanism, is generally accepted as the result of shear deformation in the shear zone and tool-chip friction. In order to accurately study chip formation process in HSC, a theoretical model for the high-speed orthogonal cutting of aluminum alloy 6061-T6 was built, which can be used to calculate the important parameters of chip formation, such as shear angle, friction angle, length of shear plane, tool-chip contact length, and width of the first shear zone. A series of orthogonal cutting experiments, with the YG6 carbide tool and on a wide range of cutting speed (100–1,900 m/min) and feed (0.06–0.15 mm/r), were performed in order to obtain the parameters required in the model, including the cutting forces, the chip thickness, and the shear slip distance. Seven kinds of chip formation parameters were obtained with different cutting parameters in the experiment, and the built theoretical model can well explain the formation process and the morphology characteristics of these chips, which proves that the combined method of theoretical model and orthogonal cutting experiment is an effective and easy approach to obtain the parameters of chip formation in HSC, avoiding the cutting speed limitation and the safety risk in quick-stop test. Within the range of parameters set in the experiments, the chip mainly appears to be continuous chip, curling chip, or discontinuous chip. And the chip thickness, friction angle, length of shear plane, and width of the first shear zone decrease with the increase of the cutting speed; meanwhile, the shear slide distance and shear angle increase.  相似文献   

19.
20.
为研究陶瓷刀具切削钛合金的磨损机理,采用CC6060陶瓷刀片对TC4钛合金进行了干式车削试验。结果表明:陶瓷刀具干式切削TC4钛合金时,磨损形貌以前刀面月牙洼磨损、后刀面沟槽磨损和刀尖破损为主,磨损机理主要是粘结磨损和氧化磨损。随着切削速度的增加,刀具磨损加剧,刀具寿命降低。CC6060陶瓷刀片干式切削钛合金时的使用寿命很低,不适于干式切削钛合金。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号