首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介孔二氧化硅(MSNs)作为一类新型的药物载体在药物缓控释领域的应用方兴未艾。采用模板诱导和自组装方法合成MCM-41型介孔二氧化硅纳米颗粒,并通过聚乙二醇(PEG)的表面修饰,制备出一类具有高亲水性、高孔隙率、高比表面积的MSNs修饰微球。采用氮吸附(BET)、扫描电镜(SEM)、透射电镜(TEM)、粒径分析等手段表征并对比了聚乙二醇(PEG)修饰前后的MSNs基础理化性能。在此基础上,选用阿霉素作为模型药物,包埋于介孔材料中,对比了PEG修饰前后MSNs中阿霉素的装载量、包封率及释放行为。选用乳腺癌细胞MCF-7为模型癌细胞,选用人血清蛋白(HAS)作为模型蛋白,考察了两种材料对细胞的生物安全性及对蛋白的吸附情况,并将两种材料所对应的载药微球与MCF-7进行共培养,探究两种载药系统对癌细胞的灭杀情况。  相似文献   

2.
应用扫描电镜研究反相胶束法合成介孔二氧化硅微球   总被引:2,自引:0,他引:2  
以十六烷基三甲基溴化胺(CTAB)为模板,采用反相胶束法合成不同粒径的二氧化硅微球,并利用扫描电镜(SEM)对所制备的微球进行表征.考察了体系中乙醇/水比例、氨水用量、CTAB用量、温度和搅拌速度这5个条件对所制备的二氧化硅微球的粒径、均一性及分散性的影响.实验结果表明:增加体系中乙醇/水的比例将减小纳米颗粒的粒径,同时显著提高纳米颗粒的均一性和分散性;随着氨水用量的增加,微球的粒径先减小后增加,适当的氨水浓度有利于制备粒径均一的微球;增加CTAB的用量,微球的粒径增加;降低反应温度有利于合成大粒径、均一性好的微球;同时,提高搅拌速度也有利于制备均一性良好的微球.  相似文献   

3.
通过溶胶-凝胶法制备了介孔二氧化硅纳米微球(MSN),再将天然高分子壳聚糖(CS)接枝到MSN表面,得到介孔二氧化硅@壳聚糖(MSN@CS)微球,进一步利用海藻酸钠与壳聚糖的静电吸引作用制得介孔二氧化硅@壳聚糖-海藻酸(MSN@CS-Alg)微球.利用SEM、Zeta电位分析仪以及TGA等手段对其结构和化学性质进行表征,并检测了MSN、MSN@CS和MSN@CS-Alg对铜离子(Cu~(2+))的吸附效果.实验结果表明,MSN@CS对Cu~(2+)吸附效果最好,最大吸附量为14.59 mg·g~(-1).  相似文献   

4.
以介孔SiO_2微球作为载体,通过调节APTES的加入量,进行表面氨基功能化修饰,优化寻找氨基(—NH_2)功能化介孔SiO_2微球(NH_2@MSM)的最佳制备条件.结果表明:加入APTES的量为V_(APTES)=1.0 mL(NH_2@MSM_(1.0))时,氨基的修饰量达到最大.以复合材料NH_2@MSM_(1.0)为载体吸附重金属离子(Cd~(2+)、Pb~(2+)、Cu~(2+)),4次循环吸附效率仍分别为84.0%,75.0%,89.0%,表明功能化介孔SiO_2微球是一种良好的循环吸附载体.  相似文献   

5.
介孔材料由于其具有较大的比表面积和吸附容量,因此在吸附、分离,催化等领域都具有广泛的应用.该文采用十六烷基三甲基溴化铵(CTAB)为模版,溶胶凝胶法合成了介孔二氧化硅纳米粒子,通过透射电镜(TEM)和低温氮吸附等表征方法对合成介孔二氧化硅的结构和性能进行了分析,讨论了不同四甲氧基硅烷(TMOS)、CTAB量对介孔二氧化硅纳米粒子的粒径,比表面积及孔径的影响.  相似文献   

6.
分别采用磷酸(H3PO4)和硝酸(HNO3)为催化剂,以椰油基甘油酸钠(YCS)为模板,正硅酸乙酯(TEOS)为硅源,制备了三维六方相和囊泡相的介孔二氧化硅(SiO2).并将样品分别在550℃、700℃和850℃下焙烧,利用X射线衍射(XRD)、高倍扫描电镜(HRSEM)、高倍透射电镜(HRTEM)、氮气吸附和微电泳法对所得样品进行表征,得出焙烧温度对样品的介孔孔径、比表面积的影响关系.还研究两种结构的介孔SiO2对漆酶的吸附等温线.讨论了介孔SiO2的等电点、表面积、孔体积等参数对漆酶在介孔SiO2表面的吸附等温线和吸附动力学的影响.  相似文献   

7.
通过St9ber法制备二氧化硅微球.研究了水醇比例、无机盐种类含量等对二氧化硅微球的微观形貌和粒径分布影响.结果表明,随着反应溶液中去离子水量的增加,二氧化硅微球的粒径逐渐变小.此外,无机盐的添加也会在一定程度上促进二氧化硅微球的长大.究其原因,是因为电解质的加入会破坏微球表面双电层的稳定性,进而促使其发生团聚形成粒径更大的颗粒.  相似文献   

8.
旨在研究不同形态、粒径的二氧化硅纳米粒作为载银抗菌剂载体,对载银量及抗菌性能的影响.制备3组不同形态的介孔二氧化硅(mesoporous silica nanoparticles,MSN),氨基化修饰后载银,以大肠杆菌、金黄色葡萄球菌及耐甲氧西林金葡菌(MRSA)为模型,测定载银二氧化硅抗菌剂的抗菌活性.结果表明,随着十六烷基三甲氧基溴化铵(CTAB)浓度的升高,介孔二氧化硅的形貌从球形粒子过渡到了棒状,且粒径逐渐增大.CTAB浓度为10.6 mmol/L,硅酸四乙酯(TEOS)浓度为74 mmol/L的条件下制得椭球形二氧化硅载体,比表面积956.53 m2/g.氨基改性后二氧化硅孔道内负载得到的纳米银颗粒形貌规整、分布均匀,载银量达到7.27%.特定形态的氨基改性二氧化硅载银纳米粒有较强的抑菌效果,对MRSA的最小抑菌浓度(MIC)为10 mg/L,并且在24h内持久发挥抗菌活性.  相似文献   

9.
通过三嵌段共聚物P123和PAA两种超分子在乙醇中形成协同模板体系,以溶胶凝胶法成功制备了中空介孔SiO_2微球.通过溶液吸附和高温煅烧的方法将纳米ZnO负载在SiO_2中空球结构中获得ZnO@SiO_2纳米粉体.用X射线衍射仪(XRD)、透射电子显微镜(TEM)、静态氮气吸附仪和紫外-可见漫反射(DRS)对产物的物相组成、微观形貌、比表面积、带隙宽度等进行表征.结果表明:通过负载的方式,样品的比表面积从208 m~2/g提高到253 m~2/g,孔径分布更加均匀,纳米ZnO高度分散在SiO_2载体中,提高了样品的紫外光催化活性.通过在不同乙酸锌浓度下制备的样品对比表明,在40 mmol/L物质量浓度的乙酸锌溶液中所制得的紫外光催化活性最高,在100 min内可以有效降解亚甲基蓝溶液.  相似文献   

10.
通过牺牲微米级PS模板原位合成方法制备微米级单分散中空SiO_2微球,着重研究反应温度(50,70℃)、TEOS用量(2,3,4 g)、氨水用量(1,2,3 mL)与MTC用量(0.2,0.4 g)等参数对中空微球的影响,获得微米级(1~5μm)、结构(孔径、壁厚等)可控的单分散中空SiO_2微球的最佳制备工艺,通过扫描电镜分析(SEM)、透射电镜分析(TEM)、红外光谱分析(FT-IR)、热失重分析(TGA)、氮吸附(BET)等测试手段表征了微球性能。  相似文献   

11.
摘要:采用磺化聚苯乙烯(Ps)微球为模板制备出了以Fe304-PANi(聚苯胺)为壳,PS为核的具有核壳结构多功能Fe304.PANi/PS复合微球.采用溶剂抽提溶解去除Ps核得到Fe304.PANi具有导电导磁双功能中空微球.中空微球空腔尺寸大小一致,约为190nm,壳层厚度约30nm.通过控制Ps模板磺化时间来同步控制微球空腔大小和微球壳层厚度.Fe304-PANi/PS复合微球及中空微球具有良好的导电性和超顺磁性.所制备的中空Fe304微球及中空Fe304-PANi微球对模拟污水浊度去除率分别达到84.2%及86.9%.  相似文献   

12.
介孔二氧化硅包覆银纳米颗粒的制备及抗菌性能   总被引:3,自引:0,他引:3  
首先采用次磷酸钠液相还原方法制备了纳米银溶胶;再以正硅酸乙酯为硅源,十六烷基三甲基溴化铵为模板剂,采用溶胶-凝胶法,在制备的纳米银溶胶中的银颗粒表面原位生长二氧化硅球壳;然后利用溶剂萃取法去除有机模板剂,再经超临界干燥后制备出介孔二氧化硅包覆银纳米颗粒(Ag@mSiO2)。对所得样品进行了TEM、SEM、XRD、FT-IR、N2吸附/脱附等表征,结果表明此纳米复合粒子的介孔结构有序性良好、比表面积大、呈连接的球状形貌。进一步以二倍稀释法测试了Ag@mSiO2纳米颗粒对大肠杆菌和金色葡萄球菌的最小抑菌质量浓度(均为156μg/mL)和最小杀菌质量浓度(312.5和625μg/mL),结果表明Ag@mSiO2纳米颗粒有良好的抗菌效果。  相似文献   

13.
高负载性药物可控释放在药物释放系统中起着重要的作用.合成具有高负载量的中空介孔二氧化硅(HMS),在其表面聚合一层pH敏感的聚多巴胺膜,得到具有高负载、可控释放的纳米微球.试验结果表明:外径为(420±10)nm、内径为(290±5)nm的HMS比介孔二氧化硅(MSN)具有更高的载药率(28.60%)与释放速度;最终得到的pH敏感载药纳米微粒在癌细胞酸性环境(pH=3.0)与血液弱碱性环境(pH=7.4)两种环境下皆在1~10h内均匀释放,达到可控释放,且在癌细胞环境(pH=3.0)下最终释放量是血液环境(pH=7.4)下最终释放量的2.7倍,具有pH敏感性特点.  相似文献   

14.
以正硅酸乙酯为硅源,十六烷基三甲基溴化铵作为表面活性剂,研究反应条件如氢氧化钠浓度、反应温度等对介孔二氧化硅颗粒大小和孔径的影响。实验结果表明,在一定范围内,升高反应温度和增加氢氧化钠浓度均使介孔二氧化硅粒径减小,通过添加一定量的三甲苯可以有效增加介孔二氧化硅的孔径。  相似文献   

15.
由于5G通讯频率和电路集成化的提高,出现信号传输延迟及功率损耗增大等一系列问题,对聚合物的低介电性能提出了更高的要求.本文设计合成了一类含中空玻璃微球的有机无机复合聚酰亚胺低介电薄膜材料——聚酰亚胺/中空微球(PI/SiO2-Air)复合膜.复合材料中的中空玻璃微球经过氨基化处理得到表面含有大量可反应性官能团,进一步以该微球作为化学交联位点,得到了均匀分散的PI复合薄膜,同时在复合膜中引入了均匀分布的微孔结构.所制备的PI复合膜具有优异的力学性能,其拉伸强度可达201.6 MPa.此外,复合PI膜具有优异的低介电性能,在1 MHz测试条件下的介电常数可低至2.42,介电损耗低至0.0348. Weibull击穿场强最高可达227 kV·mm-1,PI复合膜表现出更高的热稳定性,吸湿率低至1.75%.该类低介电PI复合薄膜具有优异的综合性能,在高频率、低延迟特性的5G通讯材料领域具有潜在的应用前景.  相似文献   

16.
利用反相细乳液法以硅酸四乙酯(TEOS)为硅源,成功制备了二氧化硅空心微球.对影响空心微球粒径大小、单分散性的影响因素如表面活性剂、硅源的用量,陈化过程中的搅拌速度进行了初步的探索.通过大量的实验,得出VTEOS=0.75mL,VTween80=200μL,VSpan80=400μL;在陈化搅拌阶段,先以v=600r/min的速度搅拌6h,然后以v=300r/min的速度搅拌6h,最终静置12h.在该条件下能够得到比较好的空心二氧化硅微球.  相似文献   

17.
本文构建了一种基于介孔碳纳米球(MCNs)的电化学传感器用于对乙酰氨基酚(PA)的分析检测.酚醛树脂用作碳源,商业三嵌段聚合物Pluronic F127用作表面活性剂,采用有机-有机自组装软模板法,通过低浓度水热合成尺寸均匀的介孔碳纳米球.材料的形貌通过扫描电子显微镜(SEM),X射线衍射(XRD)等表征,采用循环伏安法(CV)和差分脉冲伏安法(DPV)考察MCNs修饰的玻碳电极(MCNs/GCE)对PA的电化学催化性能,结果表明,该修饰电极对PA的电化学检测呈现线性范围宽(1~60μM和60~300μM),检测限低(0. 34μM)(S/N=3),灵敏度高(7. 15μAμM~(-1)cm~(-2)和1. 62μAμM~(-1)cm~(-2))的优点,将该修饰电极用于含扑热息痛的实际样品-对乙酰氨基酚缓释片的测定,得到了满意的结果,有望用于实际样品中PA的检测.  相似文献   

18.
复合模板剂制备有序介孔氧化铝   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法以异丙醇铝为铝源,乙醇为溶剂,非离子表面活性剂TritonX-100和三嵌段共聚物P123为复合模板剂,制备了有序介孔氧化铝。用PSD、XRD、TEM等测试技术对样品进行了结构表征,实验结果表明,合成的有序介孔氧化铝比表面积大于500m2/g,孔容超过1.0cm3/g,孔径分布窄(2~12nm),形成的蠕虫状孔道具有一定的有序性,与采用单一模板剂P123制得的介孔氧化铝相比具有比表面积大,孔分布窄,有序性好的优点。最佳模板剂配比为 n(TritonX-100)∶n(P123)=3∶1。  相似文献   

19.
以非离子表面活性剂P123为模板剂,水杨酸和均苯四甲酸酐为辅助模板剂,异丙醇铝为铝源,采用溶胶-凝胶法制备介孔氧化铝,并用XRD、HRTEM和N2吸附-脱附等手段对产物结构进行表征.实验结果表明,辅助模板剂的适量添加可增大氧化铝的比表面积,当n(均苯四甲酸酐)∶n(水杨酸)∶n(Al)=0.25∶0.05∶1时,合成的样品经过400,800℃煅烧,可制得比表面积为470,253 m2·g-1的介孔氧化铝;样品在900℃煅烧后依然保持γ-Al2O3晶相结构.  相似文献   

20.
原花青素(proanthocyanidins,PC)是广泛存在于植物体内的一大类多酚化合物,具有较高抗氧化活性,广泛应用于食品、医药等领域。但是,其稳定性差导致生物利用率低,如能提高其稳定性将有助于拓展其应用范围。采用气溶胶法,以四乙氧基硅烷为二氧化硅前躯体,十六烷基三甲基溴铵作为模板,制备了一种单分散介孔二氧化硅纳米颗粒(mesoporous silica nanoparticles, MSNs)。采用浸渍法,将PC负载于MSNs中制备了PC-MSNs复合体,考察了温度、PC质量分数、处理时间和MSNs添加量对负载效果的影响,并通过模拟胃肠道条件,研究PC-MSNs的释放情况。实验结果表明,当MSNs为5mg/mL,PC质量分数为4mg/mL,变温交替处理程序为:30℃处理0.5h,然后4℃处理0.5h,此为一次变温刺激,重复两次,在此条件下,负载量最高,每克MSNs中可负载512mg PC。根据Brunauer-Emmett-Teller分析方法得出,比表面积与孔容积明显下降,说明PC被成功负载进MSNs颗粒中。未负载的PC在小肠消化结束时只保留了50.2%,而将PC负载于MSNs体系,可使其少受胃酸破坏,到达小肠处释放,在小肠消化结束时保留了77.1%,说明MSNs可显著提高PC在小肠液中的含量,提高其生物利用率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号