首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China.  相似文献   

2.
A method of hydraulic grid slotting and hydraulic fracturing was proposed to enhance the permeability of low permeability coal seam in China. Micro-structural development and strength characteristics of coal were analysed to set up the failure criterion of coal containing water and gas, which could describe the destruction rule of coal containing gas under the hydraulic measures more accurately. Based on the theory of transient flow and fluid grid, the numerical calculation model of turbulence formed by high pressure oscillating water jet was used. With the high speed photography test, dynamic evolution and pulsation characteristics of water jet water analysed which laid a foundation for mechanism analysis of rock damage under water jet. Wave equation of oscillating water jet slotting was established and the mechanism of coal damage by the impact stress wave under oscillation jet was revealed. These provide a new method to study the mechanism of porosity and crack damage under high pressure jet.Fracture criterion by jet slotting was established and mechanism of crack development controlled by crack zone between slots was found. The fractures were induced to extend along pre-set direction,instead of being controlled by original stress field. The model of gas migration through coal seams after the hydraulic measures for grid slotting and fracking was established. The key technology and equipment for grid slotting and fracking with high-pressure oscillating jet were developed and applied to coal mines in Chongqing and Henan in China. The results show that the gas permeability of coal seam is enhanced by three orders of magnitude, efficiency of roadway excavation and mining is improved by more than 57%and the cost of gas control is reduced by 50%.  相似文献   

3.
结合最新引进的德国DDR-1200型千米定向钻机,提出在工作面顶板裂隙带内打千米定向钻孔抽采瓦斯的新方法,构建千米定向钻孔煤与瓦斯共采体系.结果表明,工作面上覆岩层存在大量横向间隙和竖向裂隙,裂隙带高度为34m左右,最大离层裂隙发生在主关键层下方,距离工作面顶板22m左右,最大离层量240mm,形成瓦斯富集区域;工作面倾向方向,回采巷道向采空区方向0~60m范围内裂隙最发育,并能长期稳定存在.据此在14301工作面进行工业性试验,试验结果表明,钻孔布置在14301工作面上方顶板22m左右,倾向方向距运输巷15m处,抽采浓度达70%以上,抽采时间在120d以上,取得最佳瓦斯抽采效果,实现煤与瓦斯共采.  相似文献   

4.
Hydraulic slotting in a gas drainage borehole is an effective method of enhancing gas drainage performance. However, it frequently occurs that a large amount of slotting products(mainly the coal slurry and gas) intensely spurt out of the borehole during the slotting, which adversely affects the slotting efficiency. Despite extensive previous investigations on the mechanism and prevention-device design of the spurt during ordinary borehole drilling, a very few studies has focused on the spurt in the slotting process. The slotting spurt is mainly caused by two reasons: the coal and gas outburst in the borehole and the borehole deslagging blockage. This paper focuses on the second reason, and investigates the hydraulic deslagging flow patterns in the annular space between the drill pipe and borehole wall.Results show that there are six deslagging flow patterns when the drill pipe is still: pure slurry flow, pure gas flow, bubble flow, intermittent flow, layering flow and annular flow. When the drill pipe rotates, each of those six flow patterns changes due to the Taylor vortex effect. Outcomes of this study could help to better understand the slotting-spurt mechanism and provide guidance on the anti-spurt strategies through eliminating the borehole deslagging blockage.  相似文献   

5.
Gas flow patterns during draining of gas from a coal seam during mining are discussed. The coal seam is treated as a dual medium with both pores and cracks. The seepage, diffusion, and desorption processes are treated using a gas flow equation that describes flow around drill holes. MATLAB is used to solve the differential equations. The permeability tracer test results from a mined coal seam are used to study the variation in gas drainage from a coal seam during mining. The results show that mining can increase the permeability of a coal seam, which then increases the gas drainage. There are inflection points in this variation over time. A close relationship between this variation and the rate of change in coal seam permeability is observed.  相似文献   

6.
水力压裂煤储层卸压增透技术的适用性分析   总被引:3,自引:2,他引:3  
水力压裂煤储层技术在不同矿区应用过程中受不同煤体破坏类型和围压条件的影响,其卸压增透效果差异性较大.为了明确该项技术的井下适用条件,优化其实施工艺,切实提高煤层瓦斯抽采率,通过分析和总结河南省不同矿区实际煤储层的水力压裂试验数据资料发现,水力压裂增透技术对Ⅰ,Ⅱ破坏类型煤体的增透效果比较明显,而在Ⅲ,Ⅳ,Ⅴ破坏类型的松软煤层中适用性则具有一定的局限性,具有压裂范围小、裂缝闭合快、增透效果不明显等特点.所得结论对于选择合理的水力压裂储层并进一步优化完善高效预抽本煤层瓦斯技术具有一定的指导意义.  相似文献   

7.
In this article an attempt to determine the influence of mining factors on the seismic activity during the longwall mining of the upper layer of coal seam no. 405/2 in one of the Polish hard coal mines in the Upper Silesian Coal Basin was conducted. Two longwall panels were mined in analogous geological conditions and based on the same mining system and technology. However, there was significant difference with regards to the mining factors, which was reflected in the observed seismic activity. Some tools used in mining seismology were applied to illustrate the aforementioned influence of mining factors, e.g. the frequency-energy distribution, the frequency-magnitude distribution, the 2 D distribution of released seismic energy, the relationship between released seismic energy and the volume of mined coal, the Benioff strain release, and the Gutenberg-Richter(GR) b coefficient distribution(b is the proportion between high and low energy tremors). Concerning the Benioff strain release, a new solution, based on the slope of a fitted line in a moving time window, is proposed.  相似文献   

8.
The definition of ‘‘residual gas" can be found in different scenarios, such as the ‘‘fast" and ‘‘slow" desorption methods of measuring gas content and the sorption hysteresis test and gas management of coal mines, however, its meaning varies a lot in different contexts. The main aim of this paper is to discuss the existence of truly undesorbable residual gas in coal seam conditions and its impacts on sorption model and gas drainage efficiency. We believe the undesorbable residual gas does exist due to the observation of the extended slow desorption test and the sorption hysteresis test. The origin of undesorbable residual gas may be because of the inaccessible(closed or semi-closed) pores. Some gas molecules produced during coalification are stored in these inaccessible pores, since the coal is relatively intact in the coal seam condition, these gas molecules cannot escape during natural desorption and then create the undesorbable residual gas. Based on the existing adsorption models, we propose the improved desorption versions by taking into consideration the role of residual gas. By numerically simulating a gas drainage case, the gas contents after different drainage times are studied to understand the influence of residual gas content on gas drainage. The results indicate that the influence starts to be obvious even when the total gas content is at a high level, and the impact becomes more and more apparent with increasing drainage time. Our study shows that the existence of residual gas will impede the gas drainage and the total amount of recoverable coal seam methane may be less than expected.  相似文献   

9.
《焦作工学院学报》2015,(4):445-450
邻近煤层受采动影响瓦斯排放率与层间距的数值关系尚不明确,在预测和确定瓦斯排放率时,工作量大且精度难于保证。针对上述问题,根据邻近层瓦斯排放率与层间距的关系曲线,进行栅格化处理,得到了邻近煤层瓦斯排放率与层间距之间对应的原始数据。根据原始数据,对邻近煤层瓦斯排放率进行数值模拟,分别建立了上邻近层、缓倾斜煤层下邻近层和倾斜、急倾斜煤层下邻近层瓦斯排放率数学模型,并且对数学模型进行了误差分析和精度考察。研究表明,建立的邻近层瓦斯排放率预测数学模型精度高,可以为邻近层瓦斯涌出量预测、突出煤层开采保护层的条件选择和开采保护层的保护效果检验工程应用方面提供便利。  相似文献   

10.
为有效预防煤矿瓦斯灾害,获取煤层注水促抽瓦斯的合理参数,以常村煤矿2103工作面为例,依据多相渗流理论,采用Fluent软件的VOF模型及多孔介质模型耦合求解,对煤层注水促抽瓦斯技术及其影响因素进行数值模拟,并将模拟结果应用于现场,对比分析数值模拟与现场实测数据,二者基本吻合.研究结果表明:煤层瓦斯含量以注水孔为中心径向逐步降低,以抽采孔为中心径向逐步升高;注水前抽采阶段,随着抽采时间的增加,抽采范围逐渐增大,抽采孔瓦斯流量先快速下降,后逐步缓慢降低;注水促抽阶段,随着注水时间的增加,注水范围逐渐增大,注水流量逐步降低,煤层瓦斯含量缓慢升高,抽采孔瓦斯流量逐渐增加;注水后抽采阶段,随着抽采时间的增加,压力水覆盖范围持续增大,煤层瓦斯含量逐渐降低,抽采孔瓦斯流量逐渐减小.注水时机、注水时间、注水压力、注水方式、布置方式及钻孔间距是影响煤层注水促抽瓦斯效果的6个主要因素.瓦斯正常抽采20 d后,按照一注一抽方式及5 m间距布置注抽钻孔,在8 MPa煤层注水压力下间歇注水10 d,煤层注水促抽瓦斯效果较好.  相似文献   

11.
An analysis of the variation rule of abutment pressure at the mining working face in a single coal seam and the mechanical behavior of surrounding rock during stoping is presented. Consideration of the elastic and plastic deformation zones that develop during the mining process allowed the determination of a relationship between horizontal stress and vertical stress. Based on this, a confined pressure unloading test was conducted by the use of the “gas-containing coal thermo-fluid-solid coupling 3-axis servo seepage” experimental apparatus. Thus, gas flow patterns in the elastic and plastic zones were derived from an experimental point of view. Darcy’s law and the Klinkenberg effect were used to derive a gas flow equation for the elastic and plastic stress fields. The study of gas flow phenomena at the working face during coal mining is of great importance for the study of gas migration and enrichment patterns.  相似文献   

12.
Aiming at the uncontrollable problem of extension direction of coal seam hydraulic fracturing, this study analyzed the course of fractures variation around the boreholes in process of hydraulic fracturing, and carried out the numerical simulations to investigate the effect of artificial predetermined fractures on stress distribution around fractured holes. The simulation results show that partial coal mass occurs relatively strong shear failure and forms weak surfaces, and then fractures extended along the desired direction while predetermined fractures changed stress distribution. Directional fracturing makes the fractures link up and the pressure on coal mass is relieved within fractured regions. Combining deep hole controlling blasting with hydraulic fracturing was proposed to realize the extension guiding-controlling technology of coal seam fractures. Industrial experiments prove that this technology can avoid local stress concentration and dramatically widen the pressure relief scope of deep hole controlling blasting. The permeability of fractured coal seam increased significantly, and gas extraction was greatly improved. Besides, regional pressure relief and permeability increase was achieved in this study.  相似文献   

13.
The main method of casting coal spontaneous combustion is prediction of index gases, with carbon monoxide(CO) commonly used as an index gas. However, coal spontaneous combustion is not the sole source of CO evolution; primal CO is generated through coalification, which can lead to forecasting mistakes. Through theoretical analysis, primal CO generation and emission from coal seams was determined.In this study, six coal samples were analyzed under six different experimental conditions. The results demonstrated the change in coal seam primal gas and concentration as functions of time, different coal samples, occurrence, various gas types and composition concentration, which are in agreement with the previous study on primal CO generation. Air charging impacts on primal gas emission. Analysis of the experimental data with SPSS demonstrates that the relationship between primal CO concentration and time shows a power exponent distribution.  相似文献   

14.
Pressure relief to increase permeability significantly improves gas extraction efficiency from coal seams. In this paper we report results from simulations using FLAC3D code to analyze changes in coal displacement and stress after special drill slots were formed. We investigated the mechanism of pressure relief and permeability increase in a high-gas and low-permeability coal seam through the modeling of gas flow. This allows the development of the technology. Slotting across rock layers in the coal seam with a rotary type cutter was then applied in the field. The results show that pressure relief and permeability increases from slotting the coal seam can increase the transport and the fracture of the coal. This expands the range of pressure relief from the drilling and increases the exposed area of the seam. The total quantity of gas extracted from slotted bore holes was three times that seen with ordinary drilling. The concentration of gas extracted from the slotted drills was from two to three times that seen using ordinary drills. The gas flow was stable at 80%. Improved permeability and more efficient gas extraction are the result of the slotting. The roadway development rate is increased by 30–50% after gas drainage. This technology diminishes the lag between longwall production and roadway development and effectively prevents coal and gas outburst, which offers the prospect of broad application.  相似文献   

15.
To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the paper conducted the numerical simulation of pre-drainage gas in drillings along coal seam, studied the relationship of adsorption constants and permeability, gas pressure, and effective drainage radius of coal seams, and applied the approach to the layout of pre-drainage gas drillings in coal seams. The results show that the permeability of coal seams is on the gradual increase with time, which is divided into three sections according to the increase rate: the drainage time 0–30 d is the sharp increase section;30–220 d is the gradual increase section; and the time above 200 d is the stable section. The permeability of coal seams is in negative linear and positive exponent relation with volume adsorption constant VLand pressure adsorption constant PL, respectively. The effective drainage radius is in negative linear relation with VLand in positive exponent relation with PL. Compared with the former design scheme, the engineering quantity of drilling could be reduced by 25%.  相似文献   

16.
分析了煤层水力压裂增透的原理,设计了两个穿层钻孔(一个压裂对象为构造软煤,另外一个为软煤的坚硬顶板)的压裂方案,在淮北矿业(集团)有限责任公司临焕煤矿进行了现场试验,采用压裂后钻孔瓦斯抽采浓度与流量等指标考察压裂效果.试验表明,水力压裂对松软煤层效果甚微.针对这一问题,提出了对松软煤层的坚硬顶板进行压裂以达到对该煤层卸压增透的目的,现场结果表明松软煤层顶板压裂能大幅增加松软煤层的渗透率,增强瓦斯抽放的效果.  相似文献   

17.
Drainage influence radius is the basic parameter for borehole arrangement, while the effect of high pressure water jet slotting technology on borehole drainage influence radius has not been studied systematically. In this paper, a fully thermo-hydro-mechanical(THM) coupled model which represents the non-linear responses of gas extraction was implemented to demonstrate the reliability of this model through history data matching. Based on this model, the susceptibilities of gas extraction with single slotted borehole, including the permeability, the gas pressure, the temperature, the coal adsorption characteristics and the radius of slot, were quantified through a series of simulations. The simulation results revealed that increasing the permeability, initial gas pressure and temperature could develop the influence radius of single slotted borehole. This finite element model and its simulation results can improve the understanding of the coal-gas interactions of underground gas drainage and provide a scientific basis for the optimization of drainage systems.  相似文献   

18.
《焦作工学院学报》2016,(2):167-172
针对目前评价瓦斯运移产出难易程度的方法均依据线性渗流理论,评价结果严重失真的问题,提出以雷诺理论为基础,通过实验室煤样地质强度因子(Geological Strength Index,GSI)的观测、启动压力梯度(λ)和渗透率测试方法,且初步建立了启动压力梯度法和GSI法用于判识瓦斯运移产出流态。指出当λ=0 Pa·m-1时为线性渗流;当λ≠0 Pa·m-1,瓦斯压力梯度大于λ时为低速非线性渗流,小于λ时为扩散。同时,以渗透率为桥梁建立了GSI与雷诺数的关系,通过煤心观测、煤壁观测和测井资料解释等途径获取GSI,即可判识煤的瓦斯流态。  相似文献   

19.
介绍了积水区探放水设计的主要内容,讨论了下煤层开采的基本方法,提出了几点重要的安全措施.  相似文献   

20.
This research reviewed the mechanics and gas desorption properties of intact coal, and tested the crushing work ratios of different intact coals, and then, studied the stress conditions for the failure or crushing of intact coal and the gas demand for the pulverization of intact coal particles. When a real-life outburst case is examined, the required minimum stress for intact coal outburst is estimated. The study concludes that the crushing work ratios of three intact coal samples vary from 294.3732 to 945.8048 J/m2. For the real-life case, more than 2300 MJ of transport work is needed, and 10062.09, 7046.57 and 5895.47 m3 of gas is required when the gas pressure is 1, 2 and 3 MPa, respectively. The crushing work exceeds the transport work and even reaches 13.96 times of the transport work. How to provide such an enormous crushing work is an energy-limiting factor for the outburst in intact coal. The strain energy is needed for the crushing work, and the required minimum stress is over 54.35 MPa, even reaching 300.44 MPa. These minimum stresses far exceed the in-situ vertical and horizontal stresses that can be provided at the 300–700 m mining depth range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号