首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas‐solid motions in a three‐dimensional conical spouted bed with a draft tube are investigated based on a simulation carried out by the coupling approach of computational fluid dynamics combined with the discrete‐element method. The distribution properties of the velocity, the concentration, and the flux of the solid phase are discussed. The vertical solid velocity in the central region initially increases, diminishes gradually, and finally decreases sharply in the region above the draft tube. Vigorous lateral solid motion occurs in the periphery of the fountain and the spout‐annulus interface. In addition, the vertical solid flux shows a large value in the spout. A larger vertical velocity but a more dilute solid concentration can be detected along the axial direction when enlarging the gas flow rate.  相似文献   

2.
Gas‐solid hydrodynamics in a three‐dimensional slot‐rectangular double‐spouted bed was numerically investigated by a combined approach of discrete element method and computational fluid dynamics, and the knowledge gained was extended to understand the mechanisms leading to operational instability due to the collapse of a spout, along with the beneficial impact of inserting a vertical partition plate. The setup investigated has two diverging bases and contains up to 2,590,000 particles. The computational results show different behaviors of pressure drop, in terms of average value, fluctuations, and power spectral trends, in the five distinct flow regimes corresponding to various superficial gas velocities. Two types of spout shapes are observed under stable spouting conditions, and the spout sizes are quantified. When one of the spouts chokes then collapses, complex interactions between the chambers are identified. Furthermore, the insertion of a vertical partition plate between two chambers appears to be an effective way to prevent the interactions between adjacent fountains, which is advantageous for improving the operational stability of such systems upon scale‐up. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4087–4101, 2015  相似文献   

3.
The effect of a submerged partition plate on improving the gas–solid flow robustness and stability in a three‐dimensional spout‐fluid bed with multiple inter‐connected chambers is numerically investigated by means of computational fluid dynamics coupled with discrete element method (CFD‐DEM). Notably, multiple‐chamber beds are necessary in scaling up the spout‐fluid bed. The influence of plate height on gas–solid distribution, spout‐annulus interaction and chamber interaction are also studied to optimize the design. The results demonstrate that inserting a partition plate with height above a certain threshold can effectively improve the stability of spouting and uniformly re‐distribute the flux load in each chamber, giving rise to parallel fountains and lower circulation flux of the solid phase. Results indicate that the plate height should be at least 80% of the packed bed height investigated, with the most optimal being about 92% based on steady spouting, and the maximum solid and gas exchanging fluxes between the chambers. © 2016 American Institute of Chemical Engineers AIChE J, 63: 485–500, 2017  相似文献   

4.
A fibre optic probe system was used to measure the profiles of vertical particle velocities in the spout and the fountain of a half-column and a full-column spouted bed. In addition, a fibre optic image probe was employed to measure vertical particle velocity profiles in the annulus of the full-column. In the spout, radial profiles of vertical particle velocities were of near Gaussian distribution. Particle velocities along the spout axis in the half-column were 30% lower than in the full-column under identical operating conditions. In the half column, particle velocities adjacent to the front plate were approximately 24% lower than a few millimeters away. The fountain core expanded suddenly near the bed surface and then gradually contracted with height. The model of Grace and Mathur (1978) gave good predictions of fountain heights for the full-column. In the annulus region, there was a 28% difference between particle velocities adjacent to the column wall and those only 2 mm away. The integrated upward solids mass flow in the spout and the downward solids flow in the annulus matched well at different bed levels.  相似文献   

5.
The hydrodynamics and chamber interaction in a three‐dimensional spout‐fluid bed with two interconnected chambers are investigated via computational fluid dynamics coupled with discrete element method (CFD–DEM), because multiple interconnected chambers are key to scaling up spout‐fluid beds. The overall solid motion, spouting evolution, and spout‐annulus interface is studied, followed by time‐averaged hydrodynamics, particle‐scale information, spout‐annulus interaction, and inter‐chamber interaction. The results show that inter‐chamber interactions lead to unique characteristics distinct from that for a single‐chamber system, including (1) asymmetry of the hydrodynamics within each chamber, (2) alternative spouting behavior in the two chambers, (3) smaller pressure drop in terms of magnitude and fluctuations, (4) two peaks in the solid residence time (SRT) frequency histogram of the annulus, (5) average SRT in the spout is twice that in a single‐chamber, and (6) larger solid dispersion in all three directions. The results provide meaningful understanding for the scale‐up of spout‐fluid beds. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1898–1916, 2016  相似文献   

6.
Direct, particle‐resolved simulations of solid–liquid fluidization with the aim of quantifying dispersion have been performed. In addition to simulating the multiphase flow dynamics (that is dealt with by a lattice‐Boltzmann method coupled to an event‐driven hard‐sphere algorithm), a transport equation of a passive scalar in the liquid phase has been solved by means of a finite‐volume approach. The spreading of the scalar—as a consequence of the motion of the fluidized, monosized spherical particles that agitate the liquid—is quantified through dispersion coefficients. Particle self‐diffusivities have also been determined. Solids volume fractions were in the range 0.2–0.5, whereas single‐sphere settling Reynolds numbers varied between approximately 3 and 20. The dispersion processes are highly anisotropic with lateral spreading much slower (by one order of magnitude) than vertical spreading. Scalar dispersion coefficients are of the same order of magnitude as particle self‐diffusivities. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1880–1890, 2014  相似文献   

7.
B. Ren  W. Zhong  B. Jin  Z. Yuan  Y. Lu 《化学工程与技术》2011,34(12):2059-2068
Gas and solid turbulent flow in a cylindrical spout‐fluid bed with conical base were investigated by incorporating various gas‐particle interaction models for two‐way coupling simulation of discrete particle dynamics. The gas flow field was computed by a k‐ϵ two‐equation turbulent model, the motion of solid particles was modeled by the discrete element method. Drag force, contact force, Saffman lift force, Magnus lift force and gravitational force acting on individual particles were considered in the mathematical models. Calculations on the cylindrical spout‐fluid bed with an inside diameter of 152 mm, a height of 700 mm, a conical base of 60° and the ratio of void area of 3.2 % were carried out. Based on the simulation, the gas‐solid flow patterns at various spouting gas velocities are presented. Besides, the changes in particle velocity, particle concentration, collision energy, particle and gas turbulent intensities at different proportions of fluidizing gas to total gas flow are discussed.  相似文献   

8.
The flow behaviours of gas‐solids were predicted by means of a hydrodynamic model of dense gas‐solid flow in spouted beds. Constitutive equations describing the particulate solids pressure and viscosity were implemented into a hydrodynamic simulation computer program. The effect of operating conditions (inclined angle and gas spouting velocity) on particle velocity and concentration in the spout, annulus and fountain regions were numerical studied. Both vertical and horizontal particle velocities increased with increasing spouting gas velocity. The diameter of the spout increases with decreasing the inclination angle. As the inclination angle is set greater than 60°, the spout cross‐section starts becoming bottlenecked, limiting the upwards flow of solids.  相似文献   

9.
The effect of elevating the spout on the dynamics of a spout‐fluidized bed, both numerically and experimentally is studied. The experiments were conducted in a pseudo‐two‐dimensional (2‐D) and a cylindrical three dimensional (3‐D) spout‐fluidized bed, where positron emission particle tracking (PEPT) and particle image velocimetry (PIV) were applied to the pseudo‐2‐D bed, and PEPT and electrical capacitance tomography (ECT) to the cylindrical 3‐D bed. A discrete particle model (DPM) was used to perform full 3‐D simulations of the bed dynamics. Several cases were studied, that is, beds with spout heights of 0, 2, and 4 cm. In the pseudo‐2‐D bed, the spout‐fluidization and jet‐in‐fluidized‐bed regime, were considered first, and it was shown that in the spout–fluidization regime, the expected dead zones appear in the annulus near the bottom of the bed as the spout is elevated. However, in the jet‐in‐fluidized‐bed regime, the circulation pattern of the particles is affected, without the development of stagnant zones. The jet‐in‐fluidized‐bed regime was further investigated, and additionally the experimental results obtained with PIV and PEPT were compared with the DPM simulation results. The experimental results obtained with PIV and PEPT agreed mutually very well, and in addition agreed well wtih the DPM results, although the velocities in the annulus region were slightly over predicted. The latter is probably due to the particle‐wall effects that are more dominant in pseudo‐2‐D systems compared with 3‐D systems. In the jet‐in‐fluidized‐bed regime, the background gas velocity is relatively high, producing bubbles in the annulus that interact with the spout channel. In the case of a non elevated spout, this interaction occurs near the bottom of the bed. As the spout is elevated, this interaction is shifted upwards in the bed, which allows the bubbles to remain undisturbed providing the motion of the particles in the annulus near the bottom of the bed. As a result, no dead zones are created and additionally, circulation patterns are vertically stretched. These findings were also obtained for the cylindrical 3‐D bed; although, the effects were less pronounced. In the cylindrical 3‐D bed the PEPT results show that the effect on the bed dynamics starts at hspout =1 4 cm, which is confirmed by the ECT results. Additionally, ECT measurements were conducted for hspout =1 6 cm to verify if indeed the effect happens at larger spout heights. The root mean square of the particle volume fraction slightly increased at hspout =1 2 cm, whereas a larger increase is found at hspout = 4 and 6 cm, showing that indeed more bubbles are formed. The presented results have not been reported so far and form valuable input information for improving industrial granulators. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2524–2535, 2012  相似文献   

10.
Solid particles flow in a conical spouted bed is characterized by radioactive particle tracking. The influence of operating conditions on key parameters of this flow is evaluated and discussed: the morphology of the solid bed is not strongly influenced by the forces exerted by the gas on the solid particles, but rather by geometrical considerations; the particles spend approximately 8% of their time in the spout in all experiments; it is the force exerted on the solid particles by the gas that directly controls the volumetric flow rate between adjacent regions, and not the amount of particles in the bed; as U/Ums increases, the volume of solid particles in the annulus decreases, the volume of solid particles in the fountain increases and the volume of solid particles in the spout remains constant. Correlations to predict key flow parameters as functions of operating conditions are also established and discussed. © 2015 American Institute of Chemical Engineers AIChE J, 62: 26–37, 2016  相似文献   

11.
Through a combined computational fluid dynamics and discrete element method approach, the effect of the operating parameters on the hydrodynamics and heat‐transfer properties of gas‐solid two‐phase flows in a spouted bed are extensively investigated. Considering the high velocity in the fountain region, gas turbulence is resolved by employing the large‐eddy simulation. The rolling friction model is adopted for more precise predictions of solid behavior near the wall. Subsequently, the gas‐solid flow patterns, gas‐solid velocities, and temperature evolution are investigated. Moreover, different operating conditions and geometry configurations are evaluated with respect to heat‐transfer performance. The results provide a fundamental understanding of heat‐transfer mechanisms in spouted beds.  相似文献   

12.
We determined and fine‐tuned the solids transport models appropriate for predicting the single‐phase carrier fluid velocity to transport solid particles in conduits for horizontal, low concentration flow. A database with 538 experimental data points was compiled. A literature review was performed to determine the data ranges, forces, and mechanisms used to develop 44 models, and their velocity predictions were compared against the database using statistics. Using the dimensionless forms of the models and the data, the model parameters were adjusted to improve their accuracy and identify the dominant forces. At low concentrations: for liquid/solid flow from a bed of solids and gas/solid flow from the bottom of pipelines, the particle weight, and inertial and viscous forces dominate; for gas/solid flow from a bed of solids, the particle weight, and inertial, viscous, and adhesive forces play a role; and gaps exist in the data for large‐diameter pipes and high‐density gases. © 2013 American Institute of Chemical Engineers AIChE J, 60: 76–122, 2014  相似文献   

13.
In this paper, both time-averaged and fluctuating behaviors of granular solids in a two-dimensional spouted bed (2DSB) were investigated by particle image velocimetry (PIV). A self-developed algorithm for the high-gradient granular flow field was employed to measure particle velocity sequences together with power spectral density, mean particle velocity and granular temperature. The incoherent spout was characterized as an ‘X’ geometry marked with a periodic upwardly moving neck consisting of particle clusters. In the annulus, particles move periodically as a process of acceleration-deceleration-stagnation that has the same domain frequency as the pressure drop of 2DSB. The time-averaged downward velocities have a maximum at a certain position between the spout wall and conical wall. In the spout, the longitudinal profiles of vertical particle velocities along the axis exhibit a fast acceleration followed by a long flat peak, while the normalized lateral profiles at all bed levels tend to collapse into a third polynomial curve with an inflection point. A mushroom-like distribution of the granular temperature exists in 2DSB. The peaks of granular temperature occur not only near the spout-annulus interface, but also at the corner zone between the annulus and the fountain.  相似文献   

14.
The syngas chemical looping process coproduces hydrogen and electricity with iron oxide based oxygen carriers in a circulating moving bed system. In this article, a one‐dimensional (1‐D) dynamic model is developed to simulate the countercurrent gas–solid reactive flow in the moving‐bed reducer. This model is validated by TGA and bench‐scale experiments. Both the steady state and dynamic composition profiles are obtained to help understand the reaction and reactor behaviors. Numerical simulation on the effects of reactor length is conducted to optimize the moving‐bed reducer design. It is also found that minor variations in the feed rate ratio near a critical point that is represented by the reaction equilibrium could yield a significant difference in the time required for the reactions to reach a steady‐state operation. Such a difference has an important practical implication in that the moving‐bed reducer should be designed and operated to circumvent the critical point. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3432–3443, 2013  相似文献   

15.
The three‐dimensional propagation of a horizontal gas jet injected into a gas‐solid crossflow is described by a model based on the mass and momentum balances for both phases. The potential core close to the nozzle, the kidney‐shaped cross‐section of the jet and the region of rapidly increasing jet volume are taken into account. Viscous and turbulent stresses within the gas phase as well as the momentum exchange with the solid phase are considered. Several parameters are determined empirically by experimental data obtained by measurements in a dilute circulating fluidized bed. The comparison of calculated with experimental data shows good agreement concerning the shape of the jet axis and the solid phase concentration.  相似文献   

16.
A novel nonintrusive technique is presented to investigate hydrodynamic and thermal behavior of gas–solid spout‐fluidized beds with liquid injection, by simultaneously capturing visual and infrared images. Experiments were performed in a pseudo‐2D bed with draft plates filled with glass or γ‐alumina particles to investigate the effect of liquid injection and particle properties on the flow characteristics. For the glass particles under dry and wet conditions, time‐averaged particle velocities show similar quasi‐steady‐state behavior. However, under wet conditions, lower particle velocities were observed in both spout and annulus as compared with the dry system. Whereas, γ‐alumina particles do not show considerable variation in the particle velocities under dry and wet conditions and fluidize well at higher liquid injection rates. Additionally, for the glass particles, the particle temperature significantly decreases as compared to the γ‐alumina particles. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1146–1159, 2015  相似文献   

17.
Understanding asphaltene nanoaggregation kinetics is a key to predicting the deposition in pure quartz‐grain porous media. High‐throughput quartz packed‐bed microreactors (μPBRs) were, therefore, designed to provide mechanistic insights by merging oilfield chemistry and microchemical systems. In‐line UV‐Vis spectroscopy and pressure transducer were used to characterize the stable packing of quartz particles with porosity of ~40% and permeability of ~5.5 × 10?13 m2. Temperature (25.0–90.0°C), n‐heptane composition (50.0–80.0 vol %), and n‐alkane (n‐C5 to n‐C9) were all observed to influence asphaltenes deposition in the porous media, and reduced dispersion was obtained in the damaged packed‐bed by estimating dispersion coefficients and the Bodenstein number. Deposition by mechanical entrapment dominated the mechanism in all scenarios, as discovered by the simplified Kozeny–Carman and Civan's permeability‐porosity relationships. The results could aid in the design of remediations that minimize production losses of considerable economic magnitude. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3534–3546, 2014  相似文献   

18.
Abstract

A study has been carried out on the influence process conditions and design parameters have on the drying in a conical spouted bed. Optimum parameters have been determined for the draft tube and the fountain confiner. Drying time is reduced when the spout region is enlarged. A distance between the bed surface and the lower end of the confiner in the 0.10–0.15 m range and a confiner of 0.5–0.9 m length minimize the drying time. Longer distances do not avoid entrainment, and shorter distances lead to higher pressure drop and minimum spouting velocity. Longer fountain confiners do not reduce significantly the drying time. Draft tubes with a reduced aperture ratio lead to longer drying times due to their adverse effect on the gas–solid contact. Aperture ratios above 60% cause a decrease in the efficiency of the process due to the higher gas flow rates required to achieve spouting regime.  相似文献   

19.
Compared with conventional fluidized beds, circulating fluidized beds have many advantages including better interfacial contacting and reduced backmixing (Lim et al., 1995). While there are many reports on the gas—solid circulating fluidized systems, liquid—solid and gas—liquid—solid circulating fluidized bed systems have been scantily studied. However, extending current knowledge obtained in gas—solid systems to liquid—solids and gas—liquid—solid three‐phase systems is shown to open new horizons for applications of circulating fluidized bed technology and expected to lead to the development of highly efficient liquid—solid and gas—liquid—solid reactors, especially for the ever growing field of biotechnology. In order to fully appreciate the potential of those two types of liquid phase circulating fluidized beds, recent progress is reviewed in this article. Their potential applications to biochemical processes are also discussed.  相似文献   

20.
An a priori reactor model for an adiabatic spouted bed reactor has been developed. This model uses first-principles mass and energy balances to predict the concentration and temperature profiles in the spout, annulus and fountain regions of the reactor. The particle circulation and voidage profiles in the spout are calculated using previously developed analytical techniques. Particle circulation patterns in the annulus are determined by a minimum path-length analysis. The spout and fountain are shown to contribute significantly to the overall conversion in the bed. Predicted and experimental conversions at flowrates up to 1.2Ums show that extension of the fountain reaction zone and increased particle circulation with increasing inlet flow makes up for the higher average voidage in the spout and fountain. Experimental data confirm the calculated results for a stably spouting bed with CO oxidation over a Co3O4/αAl2O3 catalyst. The effects of flowrate and inlet reactant concentration are confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号