首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growing demand for advanced energy storage devices with high energy density and high safety has continuously driven the technical upgrades of cell architectures as well as electroactive materials. Designing thick electrodes with more electroactive materials is a promising strategy to improve the energy density of lithium‐ion batteries (LIBs) without alternating the underlying chemistry. However, the progress toward thick, high areal capacity electrodes is severely limited by the sluggish electronic/ionic transport and easy deformability of conventional electrodes. A self‐supported ultrahigh‐capacity and fire‐resistant LiFePO4 (UCFR‐LFP)‐based nanocomposite cathode is demonstrated here. Benefiting from the structural and chemical uniqueness, the UCFR‐LFP electrodes demonstrate exceptional improvements in electrochemical performance and mass loading of active materials, and thermal stability. Notably, an ultrathick UCFR‐LFP electrode (1.35 mm) with remarkably high mass loading of active materials (108 mg cm?2) and areal capacity (16.4 mAh cm?2) is successfully achieved. Moreover, the 1D inorganic binder‐like ultralong hydroxyapatite nanowires (HAP NWs) enable the UCFR‐LFP electrode with excellent thermal stability (structural integrity up to 1000 °C and electrochemical activity up to 750 °C), fire‐resistance, and wide‐temperature operability. Such a unique UCFR‐LFP electrode offers a promising solution for next‐generation LIBs with high energy density, high safety, and wide operating‐temperature window.  相似文献   

2.
Micro‐supercapacitors (MSCs) as a new class of energy storage devices have attracted great attention due to their unique merits. However, the narrow operating voltage, slow frequency response, and relatively low energy density of MSCs are still insufficient. Therefore, an effective strategy to improve their electrochemical performance by innovating upon the design from various aspects remains a huge challenge. Here, surface and structural engineering by downsizing to quantum dot scale, doping heteroatoms, creating more structural defects, and introducing rich functional groups to two dimensional (2D) materials is employed to tailor their physicochemical properties. The resulting nitrogen‐doped graphene quantum dots (N‐GQDs) and molybdenum disulfide quantum dots (MoS2‐QDs) show outstanding electrochemical performance as negative and positive electrode materials, respectively. Importantly, the obtained N‐GQDs//MoS2‐QDs asymmetric MSCs device exhibits a large operating voltage up to 1.5 V (far exceeding that of most reported MSCs), an ultrafast frequency response (with a short time constant of 0.087 ms), a high energy density of 0.55 mWh cm?3, and long‐term cycling stability. This work not only provides a novel concept for the design of MSCs with enhanced performance but also may have broad application in other energy storage and conversion devices based on QDs materials.  相似文献   

3.
Layered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials.  相似文献   

4.
Lead‐free tin sulfide (SnS), with an analogous structure to SnSe, has attracted increasing attention because of its theoretically predicted high thermoelectric performance. In practice, however, polycrystalline SnS performs rather poorly as a result of its low power factor. In this work, bulk sodium (Na)‐doped SnS single crystals are synthesized using a modified Bridgman method and a detailed transport evaluation is conducted. The highest zT value of ≈1.1 is reached at 870 K in a 2 at% Na‐doped SnS single crystal along the b‐axis direction, in which high power factors (2.0 mW m?1 K?2 at room temperature) are realized. These high power factors are attributed to the high mobility associated with the single crystalline nature of the samples as well as to the enhanced carrier concentration achieved through Na doping. An effective single parabolic band model coupled with first‐principles calculations is used to provide theoretical insight into the electronic transport properties. This work demonstrates that SnS‐based single crystals composed of earth‐abundant, low‐cost, and nontoxic chemical elements can exhibit high thermoelectric performance and thus hold potential for application in the area of waste heat recovery.  相似文献   

5.
High‐performance flexible batteries are promising energy storage devices for portable and wearable electronics. Currently, the major obstacle to develop flexible batteries is the shortage of flexible electrodes with excellent electrochemical performance. Another challenge is the limited progress in the flexible batteries beyond Li‐ion because of a safety concern for the Li‐based electrochemical system. In this work, a self‐supported tin sulfide (SnS) porous film (PF) is fabricated as a flexible cathode material in an Al‐ion battery, which delivers a high specific capacity of 406 mAh g?1. A capacity decay rate of 0.03% per cycle is achieved, indicating a good stability. The self‐supported and flexible SnS film also shows an outstanding electrochemical performance and stability during dynamic and static bending tests. In situ transmission electron microscopy demonstrates that the porous structure of SnS is beneficial for minimizing the volume expansion during charge/discharge. This leads to an improved structural stability and superior long‐term cyclability.  相似文献   

6.
Facile control over the morphology of phase pure tin monosulfide (SnS) thin films, a promising future absorber for thin film solar cells, is enabled by controlling the growth kinetics in vapor transport deposition of congruently evaporated SnS. The pressure during growth is found to be a key factor in modifying the final shape of the SnS grains. The optimized cube‐like SnS shows p‐type with the apparent carrier concentration of ≈1017 cm?3 with an optical bandgap of 1.32 eV. The dense and flat surface morphology of 1 µm thick SnS combined with the minimization of pinholes directly leads to improved diode quality and increased shunt resistance of the SnS/CdS heterojunction (cell area of 0.30 cm2). An open‐circuit voltage of up to 0.3068 V is achieved, which is independently characterized at the Korea Institute of Energy Research (KIER). Detailed high‐resolution transmission electron microscopy analysis confirms the absence of detrimental secondary phases such as Sn2S3 or SnS2 in the SnS grains or at intergrain boundaries. The initial efficiency level of 98.5% is maintained even after six months of storage in air, and the final efficiency of the champion SnS/CdS cell, certified at the KIER, is 2.938% with an open‐circuit voltage of 0.2912 V.  相似文献   

7.
Thin‐film solar cells are made by vapor deposition of Earth‐abundant materials: tin, zinc, oxygen and sulfur. These solar cells had previously achieved an efficiency of about 2%, less than 1/10 of their theoretical potential. Loss mechanisms are systematically investigated and mitigated in solar cells based on p‐type tin monosulfide, SnS, absorber layers combined with n‐type zinc oxysulfide, Zn(O,S) layers that selectively transmit electrons, but block holes. Recombination at grain boundaries is reduced by annealing the SnS films in H2S to form larger grains with fewer grain boundaries. Recombination near the p‐SnS/n‐Zn(O,S) junction is reduced by inserting a few monolayers of SnO2 between these layers. Recombination at the junction is also reduced by adjusting the conduction band offset by tuning the composition of the Zn(O,S), and by reducing its free electron concentration with nitrogen doping. The resulting cells have an efficiency over 4.4%, which is more than twice as large as the highest efficiency obtained previously by solar cells using SnS absorber layers.  相似文献   

8.
Two blue emitters based on fluorene‐bridged quinazoline and quinoxaline derivatives were prepared via the Suzuki reaction. Their photoluminescent properties were investigated. Furthermore, theoretical studies on these materials using the density functional theory calculation were conducted. To explore their electroluminescent properties, multilayered organic light‐emitting diodes were fabricated with the following device structure: indium–tin–oxide (180 nm)/4,4′‐bis(N‐(1‐naphthyl)‐N‐phenylamino)biphenyl (50 nm)/blue emitting materials ( 1 and 2 ) (30 nm)/bathophenanthroline (35 nm)/8‐hydroxy‐quinolinato lithium (2 nm)/Al (100 nm). Two devices showed efficient blue emission with the external quantum efficiencies of 1.58% and 1.30%, respectively, at 20 mA/cm2, and Commission Internationale dÉclairage coordinates of (0.18, 0.24) and (0.19, 0.27) at 6.0 V. These results suggest that the self‐aggregation properties of emitters would have considerable effects on their photoluminescent and electroluminescent properties.  相似文献   

9.
Improving the lithium (Li) storage properties of silicon (Si)‐based anode materials is of great significance for the realization of advanced Li‐ion batteries. The major challenge is to make Si‐based anode materials maintain electronic conduction and structural integrity during cycling. Novel carbon‐coated Si nanoparticles (NPs)/reduced graphene oxides (rGO) composites are synthesized through simple solution mixing and layer‐by‐layer assembly between polydopamine‐coated Si NPs and graphene oxide nanosheets by filtration, followed by a thermal reduction. The anodic properties of this composite demonstrate the potency of the novel hybrid design based on two dimensional materials for extremely reversible energy conversion and storage. A high capacity and an extremely stable cycle life are simultaneously realized with carbon‐coated Si/rGO composite, which has a sandwich structure. The unprecedented electrochemical performance of this composite can be ascribed to the synergistic effect of polydopamine and rGO. The polydopamine layer forms strong hydrogen bonding with rGO through chemical cross‐linking, thus firmly anchoring Si NPs on rGO sheets to prevent the aggregation of Si NPs and their electronic contact loss. Finally, its structural feature with stacked rGO clipping carbon‐coated Si NPs inside it enables to keep the overall electrode highly conductive and mechanically robust, thus maintaining its initial capacity even with extended cycling.  相似文献   

10.
Platinum (Pt)‐based catalysts with high Pt utilization efficiency for efficient H2 evolution are attracting extensive attention to meet the issues of energy exhaustion and environmental pollution. Herein, a one‐step electrochemical method is demonstrated to construct ultrafine heterostructure Pt2W/WO3 on reduced graphene oxide (RGO) by injecting multielectrons into the Preyssler anion [NaP5W30O110]14? to codeposit with anodic deliquescent Pt cations. The resulting Pt2W/WO3/RGO shows much higher performance than that of commercial Pt catalysts for large‐current‐density H2 evolution, which can deliver a large current density of 500 mA cm?2 with an overpotential of only 394 mV, much lower than that of 20% Pt/C (578 mV). Comparisons with control experiments and density functional theory (DFT) calculations both suggest that the much enhanced activity can be mainly attributed to the synergistic cooperation of different components to drive fast and continuous hydrogen desorption on Pt2W/WO3/RGO, while it could not run normally for 20% Pt/C under similar conditions due to the formation of huge bubbles on the electrode surface. The effective integration of high catalytic activity and hydrogen desorption ability into a single material can yield advanced materials for large‐current‐density H2 evolution with remarkable stability.  相似文献   

11.
Surface properties of cathode particles play important roles in the transport of ions and electrons and they may ultimately dominate cathode's performance and stability in lithium‐ion batteries. Through the use of carefully prepared Li1.2Ni0.13Mn0.54Co0.13O2 crystal samples with six distinct morphologies, surface transition‐metal redox activities and crystal structural transformation are investigated as a function of surface area and surface crystalline orientation. Complementary depth‐profiled core‐level spectroscopy, namely, X‐ray absorption spectroscopy, electron energy loss spectroscopy, and atomic‐resolution scanning transmission electron microscopy, are applied in the study, presenting a fine example of combining advanced diagnostic techniques with a well‐defined model system of battery materials. The present study reports the following findings: (1) a thin layer of defective spinel with reduced transition metals, similar to what is reported on cycled conventional secondary particles in the literature, is found on pristine oxide surface even before cycling, and (2) surface crystal structure and chemical composition of both pristine and cycled particles are facet dependent. Oxide structural and cycling stabilities improve with maximum expression of surface facets stable against transition‐metal reduction. The intricate relationships among morphology, surface reactivity and structural transformation, electrochemical performance, and stability of the cathode materials are revealed.  相似文献   

12.
Organolead halide perovskite materials have demonstrated great potential in the solar cells field owing to their excellent optoelectronic properties. However, the instability issue of the perovskites impedes the translation of their attractive features for the solar fuel production such as photoelectrochemical H2 production from water splitting. Herein, CH3NH3PbI3 a photocathode with a sandwich‐like structure is fabricated with a general and scalable approach toward addressing this issue. The photocathode exhibits an onset potential at 0.95 V versus reversible hydrogen electrode (RHE) and a photocurrent density of ?18 mA cm?2 at 0 V versus RHE with an impressive ideal ratiometric power‐saved efficiency of 7.63%. More impressively, the photocathode retains good stability under 12 h continuous illumination in water at wide pH range. This performance is much superior to that of the best perovskite‐based photoelectrode ever reported.  相似文献   

13.
Delivery of high‐energy density with long cycle life is facing a severe challenge in developing cathode materials for rechargeable sodium‐ion batteries (SIBs). Here a composite Na0.6MnO2 with layered–tunnel structure combining intergrowth morphology of nanoplates and nanorods for SIBs, which is clearly confirmed by micro scanning electron microscopy, high‐resolution transmission electron microscopy as well as scanning transmission electron microscopy with atomic resolution is presented. Owing to the integrated advantages of P2 layered structure with high capacity and that of the tunnel structure with excellent cycling stability and superior rate performance, the composite electrode delivers a reversible discharge capacity of 198.2 mAh g?1 at 0.2C rate, leading to a high‐energy density of 520.4 Wh kg?1. This intergrowth integration engineering strategy may modulate the physical and chemical properties in oxide cathodes and provide new perspectives on the optimal design of high‐energy density and high‐stable materials for SIBs.  相似文献   

14.
Engineering electronic structure to enhance the binding energies of reaction intermediates in order to achieve a high partial current density can lead to increased yield of target products. Herein, amino‐functionalized carbon is used to regulate the electronic structure of tin‐based catalysts to enhance activity of CO2 electroreduction. The hollow nanotubes composed of SnS (stannous sulfide) nanosheets are modified with amino‐functionalized carbon layers, achieving a highest formate Faraday efficiency of 92.6% and a remarkable formate partial current density of 41.1 mA cm?2 (a total current density of 52.1 mA cm?2) at a moderate overpotential of 0.9 V versus reversible hydrogen electrode, as well as a good stability. Density functional theory calculations demonstrate that the superior activity is attributed to the synergistic effect among SnS and Aminated‐C in increasing the adsorption energies of the key intermediates and accelerating the charge transfer rate.  相似文献   

15.
A flexible air electrode (FAE) with both high oxygen electrocatalytic activity and excellent flexibility is the key to the performance of various flexible devices, such as Zn–air batteries. A facile two‐step method, mild acid oxidation followed by air calcination that directly activates commercial carbon cloth (CC) to generate uniform nanoporous and super hydrophilic surface structures with optimized oxygen‐rich functional groups and an enhanced surface area, is presented here. Impressively, this two‐step activated CC (CC‐AC) exhibits superior oxygen electrocatalytic activity and durability, outperforming the oxygen‐doped carbon materials reported to date. Especially, CC‐AC delivers an oxygen evolution reaction (OER) overpotential of 360 mV at 10 mA cm?2 in 1 m KOH, which is among the best performances of metal‐free OER electrocatalysts. The practical application of CC‐AC is presented via its use as an FAE in a flexible rechargeable Zn–air battery. The bendable battery achieves a high open circuit voltage of 1.37 V, a remarkable peak power density of 52.3 mW cm?3 at 77.5 mA cm?3, good cycling performance with a small charge–discharge voltage gap of 0.98 V and high flexibility. This study provides a new approach to the design and construction of high‐performance self‐supported metal‐free electrodes.  相似文献   

16.
Spherical three‐dimensional (3D) cellular aggregates are valuable for various applications such as regenerative medicine or cell‐based assays due to their stable and high functionality. However, previous methods to form aggregates have shown drawbacks, being labor‐intensive, showing low productivity per unit area or volume and difficulty to form homogeneous aggregates. We proposed a novel strategy based on oxygen‐permeable polydimethylsiloxane (PDMS) honeycomb microwell sheets, which can theoretically supply about 80 times as much oxygen as conventional polystyrene culture dishes, to produce recoverable aggregates in controllable sizes using mouse insulinoma cells (MIN6‐m9). In 48 hours of culture, the PDMS sheets produced aggregates whose diameters were strictly controlled (?32, 60, 90, 150 and 280 mm) even at an inoculum density eight times higher (8.0×105 cells/cm2) than that of normal confluent monolayers (1.0×105 cells/cm2). Measurement of the oxygen tension near the cell layer and glucose/lactate analysis clearly showed that cells exhibit aerobic respiration on the PDMS‐based culture system. Glucose‐responsive insulin secretion of the recovered aggregates showed that the aggregates around 90 mm in diameter secreted the largest amounts of insulin. This confirmed the advantages of 3D cellular organization and the existence of a suitable aggregate size, above which excess organization leads to a decreased metabolic response. These results demonstrated that this microwell‐based PDMS culture system provides a promising method to form size‐regulated and better functioning 3D cellular aggregates of various kinds of cells with a high yield per surface area. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:178–187, 2014  相似文献   

17.
Vertical graphene nanosheets (VGNS) hold great promise for high‐performance supercapacitors owing to their excellent electrical transport property, large surface area and in particular, an inherent three‐dimensional, open network structure. However, it remains challenging to materialise the VGNS‐based supercapacitors due to their poor specific capacitance, high temperature processing, poor binding to electrode support materials, uncontrollable microstructure, and non‐cost effective way of fabrication. Here we use a single‐step, fast, scalable, and environmentally‐benign plasma‐enabled method to fabricate VGNS using cheap and spreadable natural fatty precursor butter, and demonstrate the controllability over the degree of graphitization and the density of VGNS edge planes. Our VGNS employed as binder‐free supercapacitor electrodes exhibit high specific capacitance up to 230 F g?1 at a scan rate of 10 mV s?1 and >99% capacitance retention after 1,500 charge‐discharge cycles at a high current density, when the optimum combination of graphitic structure and edge plane effects is utilised. The energy storage performance can be further enhanced by forming stable hybrid MnO2/VGNS nano‐architectures which synergistically combine the advantages from both VGNS and MnO2. This deterministic and plasma‐unique way of fabricating VGNS may open a new avenue for producing functional nanomaterials for advanced energy storage devices.  相似文献   

18.
Thin film solar cells made from earth‐abundant, non‐toxic materials are needed to replace the current technology that uses Cu(In,Ga)(S,Se)2 and CdTe, which contain scarce and toxic elements. One promising candidate absorber material is tin monosulfide (SnS). In this report, pure, stoichiometric, single‐phase SnS films were obtained by atomic layer deposition (ALD) using the reaction of bis(N,N′‐diisopropylacetamidinato)tin(II) [Sn(MeC(N‐iPr)2)2] and hydrogen sulfide (H2S) at low temperatures (100 to 200 °C). The direct optical band gap of SnS is around 1.3 eV and strong optical absorption (α > 104 cm?1) is observed throughout the visible and near‐infrared spectral regions. The films are p‐type semiconductors with carrier concentration on the order of 1016 cm?3 and hole mobility 0.82–15.3 cm2V?1s?1 in the plane of the films. The electrical properties are anisotropic, with three times higher mobility in the direction through the film, compared to the in‐plane direction.  相似文献   

19.
Aims: This study was focused on the possibility to inactivate food‐borne pathogen Bacillus cereus by Na‐chlorophyllin (Na‐Chl)‐based photosensitization in vitro and after attachment to the surface of packaging material. Methods and Results: Bacillus cereus in vitro or attached to the packaging was incubated with Na‐Chl (7·5 × 10?8 to 7·5 × 10?5 mol l?1) for 2–60 min in phosphate buffer saline. Photosensitization was performed by illuminating cells under a light with a λ of 400 nm and an energy density of 20 mW cm?2. The illumination time varied 0–5 min and subsequently the total energy dose was 0–6 J cm?2. The results show that B. cereus vegetative cells in vitro or attached to the surface of packaging after incubation with 7·5 × 10?7 mol l?1 Na‐Chl and following illumination were inactivated by 7 log. The photoinactivation of B. cereus spores in vitro by 4 log required higher (7·5 × 10?6 mol l?1) Na‐Chl concentration. Decontamination of packaging material from attached spores by photosensitization reached 5 log at 7·5 × 10?5 mol l?1 Na‐Chl concentration. Comparative analysis of different packaging decontamination treatments indicates that washing with water can diminish pathogen population on the surface by <1 log, 100 ppm Na‐hypochlorite reduces the pathogens about 1·7 log and 200 ppm Na‐hypochlorite by 2·2 log. Meanwhile, Na‐Chl‐based photosensitization reduces bacteria on the surface by 4·2 orders of magnitude. Conclusions: Food‐borne pathogen B. cereus could be effectively inactivated (7 log) by Na‐Chl‐based photosensitization in vitro and on the surface of packaging material. Spores are more resistant than vegetative cells to photosensitization‐based inactivation. Comparison of different surface decontamination treatments indicates that Na‐Chl‐based photosensitization is much more effective antibacterial tool than washing with water or 200 ppm Na‐hypochlorite. Significance and Impact of the Study: Our data support the idea that Na‐Chl‐based photosensitization has great potential for future application as an environment‐friendly, nonthermal surface decontamination technique.  相似文献   

20.
Li‐rich manganese based oxides (LRMOs) are considered an attractive high‐capacity cathode for advanced Li‐ion batteries; however, their poor cyclability and gradual voltage fading have hindered their practical applications. Herein, an efficient and facile strategy is proposed to stabilize the lattice structure of LRMOs by surface modification of polyacrylic acid (PAA). The PAA‐coated LRMO electrode exhibits only 104 mV of the voltage fading after 100 cycles and 88% capacity retention over 500 cycles. The structural stability is attributed to the carboxyl groups in PAA chains reacting with oxygen species on the surface of LRMO to form a uniform and tightly coated film, which significantly suppresses the dissolution of transition metal elements from the cathode materials into the electrolyte. Importantly, a H+/Li+ exchange reaction takes place between the LRMO and PAA, generating a proton‐doped surface layer. Density functional theory calculations and experimental evidence demonstrates that the H+ ions in the surface lattice efficiently inhibit the migration of transition metal ions, leading to a stabilized lattice structure. This surface modification approach may provide a new route to building a stable Li‐rich oxide cathode with high capacity retention and low voltage fading for practical Li‐ion battery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号