首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
为了更适用于为无线传感网络供电,设计了一种自供能双同步开关电感电路(Self-powered DSSH电路).在压电换能器中增加了2个压电片:一片为传感器,通过微分器和比较器产生与振动同步的脉冲信号;另一片为供能片,为微分器和比较器供能.由无源峰值检测开关组成的DC-DC变换器能及时地将能量回收为负载供电.实验结果证明,设计的自供能双同步开关电感电路输出功率达到305 μW,相比标准电路提高了3.05倍,且一直保持最佳输出功率.  相似文献   

2.
一种高效压电式能量回收接口电路的优化设计   总被引:1,自引:1,他引:0  
阐述了几种压电发电机接口电路的工作过程和原理,包括标准能量回收电路,同步电荷提取电路,并联同步开关电感电路,串联同步开关电感电路和双同步开关电感电路,并从阻抗匹配角度分析了以上五种电路输出最大功率时的最佳负载阻抗范围。为了最大化地回收自然界中的振动能量,以双同步开关电感电路为例,针对其控制过程复杂且要求精确的特点,提出了一种具体的硬件电路实施策略并进行了Pspice仿真。仿真结果与理论值吻合。  相似文献   

3.
魏胜 《压电与声光》2017,39(1):144-148
压电材料可将机械振动能转换为电能,但其产生的电能较小且具有交流特性,有必要建立储能电路将压电振动产生的电能储存起来并输出稳定的直流电。根据压电构造方程,建立压电振动能量收集系统的耦合场数学模型,对输出电压和最大输出功率进行数值模拟。设计与制作了一种以电容为储能介质的储能电路,通过电压比较器和电压调节器来保证稳定的直流输出。实验结果表明该储能电路能提供稳定的2.24V的直流输出电压,储能效率最高可达66.3%,并分析其能耗及误差产生的原因。  相似文献   

4.
随着微机电系统(MEMS)技术的迅猛发展,基于压电振动的能量回收技术可以为MEMS提供电能,受到国内外众多学者的关注。该文介绍了压电式振动能量回收装置的工作机理;分别从能量回收装置的结构和材料、能量转化的接口电路、能量的存储技术、能量回收的应用实例等方面系统的介绍国内外的主要研究成果和研究进展;并对压电振动能量回收技术的发展方向进行了预测。  相似文献   

5.
刘婷  赵程  曾涛  王元元 《压电与声光》2021,43(4):464-469
为了提高压电能量采集系统的采集效率,该文提出了一种用于压电能量采集的自供电能量管理电路.采用基于并联同步开关感应(P-SSHI)技术的有源全桥整流电路来提高压电采能器的功率,降低整流电路上的导通损耗;采用低功耗稳压降压集成芯片配合超级电容器,实现能量的高效采集存储.仿真结果表明,在模拟输出电压幅值为20 V时,该整流电...  相似文献   

6.
在压电能量收集接口电路中,并联开关同步电感电路在开关断开后电感上所剩余磁能并未得到有效利用。为了克服上述问题,提出一种改进的并联同步开关电感电路,以倍压整流电路取代并联同步开关电感电路中的全桥整流电路,一方面减少整流电路耗能,另一方面在开关过程中构建新的振荡回路,将电感上存储磁能转化成电能传递至负载。再利用无源峰值检测开关电路,降低开关控制电路耗能。仿真及实验结果表明,该电路输出功率为传统并联同步开关电感电路输出功率的130%、为经典电路输出功率的9.6倍。同时,该电路中开关电路耗能仅占所采集能量的12%,可以实现能量自给。  相似文献   

7.
为了给无线传感器网络节点提供稳定、高效且长期的能量供给,该文提出了一种基于增强型同步电荷提取电路的压电能量收集接口电路(ESECE)。利用Multisim电路仿真软件对增强型同步电荷提取电路进行仿真,并与标准压电能量收集接口电路(SHE)和同步电荷提取电路(SECE)进行对比分析。实验结果表明,在相同激励条件下,ESECE比SECE的输出功率提高了近30%,最大输出功率达到190μW,同时还保证了输出功率与负载电阻的无关性。  相似文献   

8.
《压电与声光》2015,(2):349-353
设计了一种新的能量回收接口电路——双中间电容回收(DICH)接口电路,该电路由2个LC振荡电路、一个buck-boost转换器和2个中间电容组成。完成了在恒定激振位移情况下该电路的回收功率的理论分析和计算。利用Multisim仿真软件对标准电路、同步电荷提取(SECE)接口电路、并联-同步开关电感回收(SSHI)、串联-SSHI和DICH接口电路进行了仿真比较,结果表明,双中间电容回收(DICH)接口电路在最优负载时的最大回收功率仅小于并联-SSHI接口电路,约是SECE接口电路的2倍,且具有与SECE接口电路同样的特性,即回收功率与负载无关。  相似文献   

9.
介绍了基于压电效应的标准能量采集电路,在此基础上设计了并联电感同步开关能量采集电路,通过理论分析和计算,建立了该电路的输出功率数学模型.通过ANSYS压电耦合分析及MULTISIM(电路仿真软件)电路仿真,得到并联电感同步开关能最采集电路比标准能量采集电路的输出电压高出1倍,输出功率高出400%.  相似文献   

10.
根据压电元件的特性提出一种压电能量收集与管理电路。它包括一个基于电感的并联同步开关收集电路( P-SSHI )、一个控制电路和一个DC-DC电路。该P-SSHI电路只需要两个开关,仿真的结果显示其收集的能量相比传统的AC-DC电路提高5倍以上;DC-DC电路工作在电流断续模式下(DCM),这有利于降低功耗,提高轻载效率,且仿真结果的输出电压为3.3 V,电压精度为0.02%。这种压电能量收集与管理电路能够为微功率设备提供稳压。  相似文献   

11.
利用压电材料的环境振动能量收集技术具有能量密度大,无电磁干扰,较易收集的特点,该文提出一种自供电式压电振动能量采集电路,即基于耦合电感的同步电荷提取和电压翻转电路(SCET&VII),利用电子仿真软件LTspice对标准能量采集(SEH)电路、同步电荷提取(SECE)电路和SCET&VII进行仿真分析和对比。结果表明,在相同振动激励条件下,SCET&VII接口电路的负载取用功率是SEH的2.65倍、SECE的1.76倍,且功率输出不受负载影响,同时实现了能量收集中的开关动作能量自给。  相似文献   

12.
基于压电效应的能量回收接口电路是能量回收系统的重要组成部分,经典的接口电路有标准接口、同步电荷提取电路(SECE)、并联同步开关电感电路(Parallel-SSHI)、串联同步开关电感电路(Series-SSHI)4种。提出并设计了一种新的接口电路——同步电荷提取和翻转电路(SCEI)接口电路,完成了该接口电路在恒定激振位移情况下回收功率的理论分析和计算,并利用电子仿真软件Multisim对SCEI和4种典型接口电路的回收功率进行了仿真和比较。结果表明,SCEI接口电路性能优越,其回收功率约是SECE电路的1.5倍,且与负载无关。  相似文献   

13.
煤矿井下综采设备工作时会产生较大振动,利用压电振动能量收集系统实现煤矿综采设备无线监测节点自供电,有望解决传统化学电池使用寿命有限,更换困难,污染环境等问题。传统线性能量收集装置的谐振频率难以满足外界振动复杂多变的要求,导致俘能效率低下。如何提高压电振动系统俘能效率是一个亟待解决的问题。多方向是提高复杂振动环境压电俘能效率的有效途径。该文从击打式和悬臂梁式两种能量转换方式总结分析国内外学者在多方向振动能量收集方面的研究,从阵列式、自调谐、非线性、频率泵浦、弹性放大器等方面分析多方向振动能量收集系统的效率提升技术;最后,从采用新型压电材料提升俘能效率、考虑非线性和多场耦合动力学优化俘能结构、工程应用研究等方面对多方向压电能量收集技术进行了展望。  相似文献   

14.
压电振子是实现振动能量捕获的重要基础,它的结构参数对其发电量和固有频率产生直接影响,需要进行优化设计.该文针对悬臂梁压电振子结构,采用ANSYS有限元建模方法,进行了静力学及模态仿真分析.研究了压电振子的各参数和质量块对其发电量、固有频率的影响规律,设计并搭建了实验台进行实验研究.实验结果验证了仿真分析的正确性,为压电振子的优化设计提供了依据.  相似文献   

15.
结合有限元分析法和电子电路分析法建立了多模态下压电振动能量收集器与交流-直流(AC-DC)非线性负载电路相连接的等效电路仿真模型。利用有限元分析软件ANSYS确定了压电能量收集器的等效电路参数,根据这些等效电路参数,在PSPICE软件中建立了非线性负载电路条件下压电振动能量收集器的等效电路仿真模型,并实现了其输出电压和功率的快速仿真。仿真结果表明,等效电路仿真模型可得非线性负载电路条件下压电振动能量收集器的输出电压和功率,而这是单独使用ANSYS软件完全不能解决的。这为多模态下压电振动能量收集器的电能预测提供了一种简便而有效的分析方法,更为解决任意复杂非线性负载电路条件下压电振动能量收集器的输出电能预测打下了基础。  相似文献   

16.
黄瑶  秦刚  刘伟群 《压电与声光》2020,42(5):704-707
压电能量回收装置离不开能量提取电路,传统标准电路的能量提取效率不高,而采用同步切换开关的能量提取电路能有效提高了能量提取效率。该文提出采用粘性材料作为自适应机械开关结构的移动电极,它不需额外的电子器件,且可自适应悬臂梁的位移幅值,获得更高功率。分别采用正弦激励和噪声激励对粘性材料的参数进行了分析。结果表明,激励不同时,粘性材料的参数选择也不同,同时还证明了自适应机械开关的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号