首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Gordon AL  Susanto RD  Vranes K 《Nature》2003,425(6960):824-828
Approximately 10 million m3 x s(-1) of water flow from the Pacific Ocean into the Indian Ocean through the Indonesian seas. Within the Makassar Strait, the primary pathway of the flow, the Indonesian throughflow is far cooler than estimated earlier, as pointed out recently on the basis of ocean current and temperature measurements. Here we analyse ocean current and stratification data along with satellite-derived wind measurements, and find that during the boreal winter monsoon, the wind drives buoyant, low-salinity Java Sea surface water into the southern Makassar Strait, creating a northward pressure gradient in the surface layer of the strait. This surface layer 'freshwater plug' inhibits the warm surface water from the Pacific Ocean from flowing southward into the Indian Ocean, leading to a cooler Indian Ocean sea surface, which in turn may weaken the Asian monsoon. The summer wind reversal eliminates the obstructing pressure gradient, by transferring more-saline Banda Sea surface water into the southern Makassar Strait. The coupling of the southeast Asian freshwater budget to the Pacific and Indian Ocean surface temperatures by the proposed mechanism may represent an important negative feedback within the climate system.  相似文献   

2.
The tropical oceans are important source areas for global heat and water vapor transport, and changes in tropical sea surface tem-perature (SST) will have important impacts on high-latitude and global climate change. It is crucial to establish the precise phase relationship between tropical and high-latitude climate variability to gain insight into the mechanisms of global climate change. Here, we present multi-proxy records across the penultimate deglaciation (Termination II) from sediment Core SO18459, which is located in the outflow area of the Indonesian Throughflow (ITF) of the Timor Sea. These proxy records include planktonic and benthic foraminifera δ18O, planktonic foraminifera G. ruber Mg/Ca-derived SST, and δ18Ow of sea surface water. The Mg/Ca-SST records indicate a warming of 4.1°C in the Timor Sea over Termination II, which is in phase with decrease in planktonic and benthic δ18O. Our results suggest that at millennial timescales, climate change of the tropical oceans is synchronous with high-latitude ice volume changes. Furthermore, warming of the Timor Sea is almost simultaneous with warming of the Antarctic, suggesting a rapid heat transfer from the tropics to the Antarctic via the atmosphere and/or ocean circulations. The G. ruber δ18O and SST records of Core SO18459 show a marked YD-like event during Termination II, which is probably caused by decrease in Australian rainfall or strengthening of the Western Pacific Warm Pool. However, a similar YD-like event is not observed in East Asian rainfall records. This discrepancy indicates that different tropical climate systems may have different responses to the same forcing, such as El Niño Southern Oscillation. A similar YD-like event is observed in the global benthic foraminiferal δ18O records during Termination II, implying teleconnection of millennial scale climate change between the tropical regions and high latitudes.  相似文献   

3.
Indonesian Throughflow in an eddy-permitting oceanic GCM   总被引:4,自引:0,他引:4  
An eddy-permitting quasi-global oceanic GCM was driven by wind stresses from reanalysis data for the period of 1958-2001 to get the time series of the upper circulation in the Indonesian Sea. The model represents a reasonable pathway of Indonesian Throughflow (ITF) with Makassar Strait making the major passage transfer the North Pacific water southward. The simulated annual mean ITF transport is 14.5 Sv, with 13.2 Sv in the upper 700 m. Annual cycle is the dominant signal for the seasonal climatology of the upper layer transport. Both the annual mean and seasonal cycle agree well with the observation. The overall correlation between the interannual anomaly of the ITF transport and Nino 3.4 index reaches -0.65 in the simulation,which indicates that ENSO-related interannual variability in the Pacific is dominant in controlling the ITF transport. The relationship between the interannual anomalies of ITF and sea surface temperature in the Pacific, the Indian Ocean is not fixed in the simulation. In 1994, for instance, the intensive Indian Ocean sea surface temperature anomaly plays a dominant role in the formation of an impressive large transport of ITF.  相似文献   

4.
 南海深部计划与国际大洋钻探航次取得了一系列创新进展与重大突破:1)发现南海陆缘岩石圈减薄之初未出现地幔蛇纹岩出露,且岩浆迅速出现;2)新提出南海不是“小大西洋”,而是“板缘张裂”盆地,与经典的大西洋型“板内张裂”陆缘模式不同;3)揭示南海受到俯冲带的强烈控制,提出俯冲诱发地幔上涌并影响南海岩浆活动。  相似文献   

5.
利用1993—2008年法国空间局的AVISO多卫星融合高度计资料,采用随机动态、EOF等方法分析全球海平面变化的长期趋势、变化幅度以及季节变化的空间分布特征.结果表明:(a)1993—2008年间太平洋海平面呈西升东降的形态,印度洋绝大部分海区海平面呈上升趋势,大西洋除湾流流域外的其他海区海平面的长期趋势以上升为主;(b)全球海平面变化存在显著的年变化和半年变化等季节信号,无论是半球平均还是洋盆平均,北半球海平面季节变化的振幅明显大于南半球,中纬度海区季节变化的振幅最大;(c)北印度洋海平面季节变化的振幅高于同纬度带的北太平洋和北大西洋;(d)太平洋、印度洋、大西洋三大洋受西边界流、赤道流系等强流影响的海域海平面变化幅度大于周围海域;(e)赤道海域各大洋东、西边界和大洋内区海平面变化不同步,可能受赤道海洋波动的影响较大;(f)厄尔尼诺年,西太平洋暖池和赤道太平洋中部海平面明显降低,赤道东太平洋海域海平面明显升高,赤道印度洋海域东、西边界的海平面变化与其相反.  相似文献   

6.
Cane MA  Molnar P 《Nature》2001,411(6834):157-162
Global climate change around 3-4 Myr ago is thought to have influenced the evolution of hominids, via the aridification of Africa, and may have been the precursor to Pleistocene glaciation about 2.75 Myr ago. Most explanations of these climatic events involve changes in circulation of the North Atlantic Ocean due to the closing of the Isthmus of Panama. Here we suggest, instead, that closure of the Indonesian seaway 3-4 Myr ago could be responsible for these climate changes, in particular the aridification of Africa. We use simple theory and results from an ocean circulation model to show that the northward displacement of New Guinea, about 5 Myr ago, may have switched the source of flow through Indonesia-from warm South Pacific to relatively cold North Pacific waters. This would have decreased sea surface temperatures in the Indian Ocean, leading to reduced rainfall over eastern Africa. We further suggest that the changes in the equatorial Pacific may have reduced atmospheric heat transport from the tropics to higher latitudes, stimulating global cooling and the eventual growth of ice sheets.  相似文献   

7.
In this paper, the sea surface height and the heat content of the upper ocean are analyzed to retrieve the relationship of interannual variabilities between the tropical western Pacific and eastern Indian Oceans during the 1997 - 1998 El Nino event. In the prophase of this El Nino, the negative sea level anomalies (SLA) occurred in the tropical western Pacific (TWP) firstly, and then appeared in the tropical eastern Indian Ocean (TEI). The negative heat content anomalies (HCA) emerged in the TWP before this El Nino burst while the SLA signals developed over there. During the mature stage of this El Nino, two kinds of signals in the TWP and TEI turned to be the maximum negative sequently. Due to the connected interannual adjustment between the TEI and TWP, we adopted a method to estimate the Indonesian Throughflow (ITF) transport by calculating the HCA budget in the TEI. The indirect estimation of the ITF was comparable to the observation values. Therefore, the anomalies in the TEI had been proved as adv  相似文献   

8.
The tropical Pacific-Indian Ocean temperature anomaly mode and its effect   总被引:2,自引:0,他引:2  
Temperature anomaly in the Indian Ocean is closely related to that in the Pacific Ocean because of the Walker circulation and the Indonesian throughflow. So only the El Ni?o/Southern Oscillation (ENSO) in the Pacific cannot entirely explain the influence of sea surface temperature anomaly (SSTA) on climate variation. The tropical Pacific-Indian Ocean temperature anomaly mode (PIM) is presented based on the comprehensive research on the pattern and feature of SSTA in both Indian Ocean and Pacific Ocean. The features of PIM and ENSO mode and their influences on the climate in China and the rainfall in India are further compared. For proving the observation results, numerical experiments of the global atmospheric general circulation model are conducted. The results of observation and sensitivity experiments show that presenting PIM and studying its influence are very important for short-range climate prediction.  相似文献   

9.
A large number of paleoclimate records reveal subMilankovitch climatic fluctuations on the millennial-scalesuperimposing on the Earth orbital cycles[1], such as theHeinrich ice draft events in the Atlantic (each intervalabout 7000–10000 a)[2,3], the Dansgaard/Oeschger (D-O)events (millennial-scale) in Greenland Ice Cores and theBond cycle composed of a Heinrcih event after severalD-O events[4]. At present, most recent work on millennial-scale climatic fluctuations focuses on the high lat…  相似文献   

10.
Knorr G  Lohmann G 《Nature》2003,424(6948):532-536
During the two most recent deglaciations, the Southern Hemisphere warmed before Greenland. At the same time, the northern Atlantic Ocean was exposed to meltwater discharge, which is generally assumed to reduce the formation of North Atlantic Deep Water. Yet during deglaciation, the Atlantic thermohaline circulation became more vigorous, in the transition from a weak glacial to a strong interglacial mode. Here we use a three-dimensional ocean circulation model to investigate the impact of Southern Ocean warming and the associated sea-ice retreat on the Atlantic thermohaline circulation. We find that a gradual warming in the Southern Ocean during deglaciation induces an abrupt resumption of the interglacial mode of the thermohaline circulation, triggered by increased mass transport into the Atlantic Ocean via the warm (Indian Ocean) and cold (Pacific Ocean) water route. This effect prevails over the influence of meltwater discharge, which would oppose a strengthening of the thermohaline circulation. A Southern Ocean trigger for the transition into an interglacial mode of circulation provides a consistent picture of Southern and Northern hemispheric climate change at times of deglaciation, in agreement with the available proxy records.  相似文献   

11.
Shallow marine sequences of the northern South China Sea (SCS) are uplifted and exposed by plate convergence in the Taiwan mountain belt. These deposits provide detailed geological information about the rifting event, stratigraphy, sedimentology, paleoclimate and paleoceanography of the shallow SCS to compare with what are recorded in the ODP 1148 deep-sea core. Seismic surveys and marine micropalentological studies show that Eocene sequences in the offshore Taiwan Strait and onland Taiwan mountain belt are all deposited in rifting basins and are covered unconformably by the Late Oligocene-Neogene post-rifting strata. Between syn-rifting and post-rifting sequences, there is a regional break-up unconformity throughout the island. Early Oligocene and Late Eocene strata are missing along the break-up unconformity equivalent to the T7 unconformity in the Pearl River Mouth Basin off south China. This may suggest that the SCS oceanic crust could have initiated between 33 and 39 Ma. Neither obvious stratigraphic gap nor slumping features are found in the Oligocene-Miocene transition interval of Taiwan. This observation highly contrasts with what has been documented from the ODP 1148 deep-sea core. This suggests that the stratigraphic gap and slumping features could only be recorded in the SCS deep sea region, but not in the shallow shelf near Taiwan. Compared to the Middle Miocene paleoceanographic re-organization events in the SCS deep sea, the geological history of the Taiwan shallow sequence shows changes of in sedimentation and faunal composition. Due to the Antarctic glacial expansion at~14 Ma, Middle to late Miocene strata of the Western Foothills show progressive regression sedimentations associated with a decrease of benthic foraminif-eral abundance and a sharp faunal turnover event. Many Early-Middle Miocene endemic benthic foraminifers were extinct in 14-13 Ma and new benthic foraminifers of the Kuroshio Current fauna appeared from 10.2 Ma, comparable with new occurrence of Modern benthic foraminifers at 9 Ma in the Java Sea area. This reveals that the Western Boundary Kuroshio Current in the North Pacific could initiate from 10-9 Ma due to closures of the Indo-Pacific seaways by convergent tectonics between the Australian Continent and the Indonesian Arc in 12-8 Ma. Subduction of the SCS oceanic lithosphere since the Middle Miocene resulted in formation of the Hengchun Ridge accretionary prism and the North Luzon Arc. Occurrence of these two bathymetric highs ( 2400 m) since the Middle Miocene and closures of the inter-arc passages in the North Luzon arc in the last 3.5 Ma would control the water exchanges between the West Pacific and the deep SCS. Accordingly, the tectonic evolution in the Central Range-Hengchun Peninsula accretionary prism and the arc-forearc Coastal Range not only control directly the route for water exchanges between the West Pacific and the SCS, but also indirectly shows a great influence on the geochemistry of deep SCS waters. The latter is best shown by much negative carbon isotope values of benthic foraminifers in the ODP 1148 deep-sea core than the West Pacific records in the last 14 Ma.  相似文献   

12.
 应用谱分析的方法,讨论了东南亚降水分别与热带印度洋和太平洋海温的关系.得出热带印度洋和太平洋海温变化对东南亚降水影响的最佳落后时间长度.同时找出了上述2片海域对东南亚降水影响的几个关键区,它可以作为东南亚旱涝预报的强信号因子.  相似文献   

13.
A pollen record of core PC-1 from the northern Okinawa Trough, East China Sea (ECS), provides information on vegetation and climate changes since 24 cal. kaBP. A total of 103 samples were palynologically analyzed at 8 cm intervals with a time resolution of 230 a. Four pollen zones are recognized: zone Ⅰ (812-715 cm, 24.2-21.1 cah kaBP), zone Ⅱ (715-451 cm, 21.1-15.2 cah kaBP), zone Ⅲ (451-251 cm, 15.2-0.8 cah kaBP), zone Ⅳ (251-0 cm, 10.8-0.3 cal. kaBP), corresponding to Late MIS 3, Last Glacial Maximum (LGM), deglaciation and Holocene, respectively. The LGM is characterized by the dominance of herbs, mainly Artemisia, and high pollen influx, implying an open vegetation on the ex- posed continental shelf and a cool and dry climate. The deglaciation is a climate warming stage with Pinus percentage increased and Artemisia percentage decreased and a rapid sea-level rise. The Holocene is characterized by predominance of tree pollen with rapid increase in Castanea-Castanopsis indicating the development of mixed evergreen and deciduous broad-leaved forest and a warm, humid climate. Low pollen influx during the Holocene probably implies submergence of the continental shelf and retreat of the pollen source area. The vegetation indicated by pollen assemblage found in this upper zone is consistent with the present vegetation found in Kyushu, Japan. Originating from the humid mountain area of North Luzon of the Philippines, Tasmania and New Zealand, Phyllocladus with sporadic occurrence throughout PC-1 core probably suggests the influence of Palaeo-Kuroshio Current or intense summer monsoon. The observed changes in Pinus and Herbs percentage indicate fluctuations of the sea level, and high Pinus percentage corresponds to high sea level. Spectrum analysis of the pollen percentage record reveals many millennial-scale periodicities, such as periodicities of 6.8, 3.8, 2.2, 1.6 ka.  相似文献   

14.
Using a global OGCM and its relevant coupled ocean-atmosphere GCM with the contemporary, 6 MaBP and 14 MaBP oceanic topography, respectively, a series of numerical experiments are implemented in order to investigate the effect of the north shift of Australian continent on the tropical oceanic circulation, especially the formation of the western Pacific warm pool. The numerical experiments of the individual OGCM forced by the modern atmospheric circulation indicate that the closure of Indonesian passage results in warming in the tropical Pacific Ocean and cooling in the tropical Indian Ocean; furthermore, it also results in change in source of the Indonesian Through Flow (ITF) water, e.g. ITF mainly originates from the south Pacific at 14 MaBP, but it mainly originates from the north Pacific now. The coupled model shows similar results as the individual OGCM qualitatively.  相似文献   

15.
The tropospheric teleconnection pattern between the Indian Ocean Dipole (IOD) and the Pacific Ocean was studied using GISST and NECP/NCAR reanalysis data. Results show that a structure of Rossby wave train extends from the tropical Indian Ocean over southern subtropical regions of Australia and Pacific Ocean to the tropical Pacific Ocean, where a strong correlation between IOD and geopotential height (GH) anomaly of Pacific Ocean exists. Energy propagating pathways of the planetary wave with wave numbers 1-3 are qualitatively in agreement with the Rossby wave train, which implies that the energy propagation of the stationary planetary wave could be responsible for the tropospheric teleconnection between IOD and tropical Pacific Ocean.  相似文献   

16.
Surface ocean conditions in the equatorial Pacific Ocean could hold the clue to whether millennial-scale global climate change during glacial times was initiated through tropical ocean-atmosphere feedbacks or by changes in the Atlantic thermohaline circulation. North Atlantic cold periods during Heinrich events and millennial-scale cold events (stadials) have been linked with climatic changes in the tropical Atlantic Ocean and South America, as well as the Indian and East Asian monsoon systems, but not with tropical Pacific sea surface temperatures. Here we present a high-resolution record of sea surface temperatures in the eastern tropical Pacific derived from alkenone unsaturation measurements. Our data show a temperature drop of approximately 1 degrees C, synchronous (within dating uncertainties) with the shutdown of the Atlantic meridional overturning circulation during Heinrich event 1, and a smaller temperature drop of approximately 0.5 degrees C synchronous with the smaller reduction in the overturning circulation during the Younger Dryas event. Both cold events coincide with maxima in surface ocean productivity as inferred from 230Th-normalized carbon burial fluxes, suggesting increased upwelling at the time. From the concurrence of equatorial Pacific cooling with the two North Atlantic cold periods during deglaciation, we conclude that these millennial-scale climate changes were probably driven by a reorganization of the oceans' thermohaline circulation, although possibly amplified by tropical ocean-atmosphere interaction as suggested before.  相似文献   

17.
通过对不同区域海表面温度(SST)资料做超前/滞后相关性分析, 研究导致西太平洋SST异常的主要因素。基于东、西太平洋相互作用理论和印度洋电容器效应理论, 将热带西太平洋SST异常的变化分别与热带东太平洋和印度洋SST异常做超前/滞后相关性分析, 得到每个格点与强迫场之间相关性最显著的月份, 从时间的角度研究西太平洋SST异常变化与东太平洋和印度洋之间的关系。按照上述两种理论, 由于海洋的比热大, 热响应时间较长, 西太平洋SST变化应滞后于东太平洋或印度洋2~3个月。分析结果显示, 在El Nino和La Nina事件下, 西太平洋SST异常变化均超前于东太平洋1~2个月时相关性最显著; 同时, 西太平洋SST异常变化超前于印度洋3~4个月时相关性最显著。 这表明热带东太平洋和印度洋都不是导致西太平洋SST异常变化的主要因素, 西太平洋SST异常可能由多种因素共同作用所导致。  相似文献   

18.
The planktonic foraminiferal faunal census of core MD 05-2894 (7°2.25′N, 111°33.11′E, water depth 1982 m), retrieved from the southern South China Sea (SCS) during the "Marco Polo" cruise in 2005, was performed to investigate the abundance changes of a subsurface dweller, Pulleniatina obliquiloculata. The results display that the abundance of P. obliquiloculata nearly declines to zero during 16.0--14.9 ka, corresponding to the Heinrich 1 (H1) cold interval. The unexpected decrease of P. obliquiloculata occurs in the adjacent cores, roughly between 17 and 14.8 ka based on the previous studies. Accordingly, the Pulleniatina Minimum Event in the last deglaciation can serve as a good stratigraphical indicator, at least in the southern SCS. To further explore the changes of sea surface temperature (SST) and subsurface seawater temperature (SSST), we made parallel Mg/Ca measurements on surface dweller Globigerinoides tuber and subsurface dweller P. obliquiloculata tests. Since the last deglaciation, the SSTs show a continuous increasing trend towards the late Holocene, while the warming of the subsurface water is punctuated by a 2℃-cooling interval across the deglacial Pulleniatina Minimum Event. Both increased 5180 differences between G. ruber and P. obliquiloculata, and increased temperature differences between surface and subsurface water suggest a shoaling of the mixed layer during the deglacial Pulleniatina Minimum Event. Therefore, we consider that the significant changes in the upper ocean structure are responsible for the Pulleniatina Minimum Event during the last deglaciation in the southern SCS.  相似文献   

19.
Using wavelet transform, the sea surface temperature (SST) during the period of 1982–1999 of the South China Sea and the equatorial Pacific, from datasets of NOAA/AVHRR, was analyzed. It is shown that there are 4- and 8-year interannual oscillations in the eastern equatorial Pacific and 8-year interannual oscillation in the western equatorial Pacific. In terms of attractive time-frequency localization and multi-scale properties of wavelet transform, as shown by the Morlet wavelet, it is found that an in-phase coupling oscillation occurs between the SCS and the equatorial Pacific. The SST changes of SCS will have echoed every event of EI Niño (abnormally warm) and La Niño (abnormally cold) in the equatorial Pacific. There is a positive correlation between the SCS and the western equatorial Pacific in the 8-year time-scale. Evidence is presented that the SST anomalies of the equatorial Pacific influence the SST of the SCS.  相似文献   

20.
应用垂向混合坐标系海洋模式(HYCOM),对赤道以及北太平洋进行了气候态模拟和1990-1999年的模拟.给出了黑潮对我国近海热量和盐量输运的定量结果,并对其季节和年际变化特征进行了分析.气候态模拟的结果表明,黑潮对东海的热量输运与该区域的海表面热通量同量级,且呈反向变化,热量输运冬季最大,夏季最小,7月为-9×1013W,2月为2.5×1014W,春、秋为过渡季节.黑潮向南海输运的热量除夏季为负值外,其它季节均为正值.黑潮年均向东海输运热量1.67×1014 W,向南海输运热量1.5×1014W.盐量输运的变化趋势与热量一致.对1990-1999年的模拟结果进行小波分析表明,黑潮对东海热量和盐量输运具有4~7年的显著周期,且与厄尔尼诺现象密切相关.厄尔尼诺年,黑潮向东海输运的热量和盐量均有明显减小.黑潮对南海热量和盐量输运的周期约为3~4年.黑潮对南海的热量输运也与厄尔尼诺现象存在负相关关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号