首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The etch pits of Te-rich and Cd-rich precipitates of the Cd0.94Zn0.04Te crystals situated on (1 1 1) B surface were distinguished from the dislocation etch pits and evaluated by using Everson Etching for the first time. By using an IR transmission microscope and a scanning electron microscope (SEM) with an energy-dispersive x-ray spectroscopy (EDX) analytical system, the characteristics of the precipitate etch pits were studied. The etch pit of the Te-rich precipitate which would influence the etch rate of its ambient materials shows the shape of triangle or hexagon with a rough surface different from the cone-shaped triangle etch pit as the dislocation etch pit. The etch pit of the Cd-rich precipitate is always enwrapped by large quantities of dislocation etch pits, which indicates the existence of the damaged layers around the Cd-rich precipitate. Base on the characteristics of the precipitate etch pits, the areal densities of the precipitates with the size larger than 5 μm on the substrate surfaces can be measured by the optical microscope with a magnification of 50 and under Nomarski mode. Compared with the conventional measurement method based on the IR transmission microscope (IRTM), the method of the etch pit observation (EPO) is more practical for measuring the areal densities of the precipitates of CdZnTe substrates.  相似文献   

2.
We conducted low‐temperature annealing experiments at temperatures slightly above and below the melting point of Te to clarify the effects of the state of Te inclusions (solid or liquid) upon the formation of ‘star‐like’ defects in Cd‐annealed CdZnTe (CZT). We also carried out post‐growth annealing experiments with and without using Cd vapor to clarify the mechanism of formation of such defects. We demonstrated that these ‘star‐like’ defects are due to the reaction between in‐diffused Cd atoms and the molten Te inclusions, but we found no observable ‘one‐to‐one’ correlation between ‘star‐like’ defects and Te inclusions. The non‐uniform distribution of Te inclusions in the CZT matrix could account for this phenomenon since the punching distance of the dislocations depends on the volume fraction of inclusions within the matrix.  相似文献   

3.
The stearate-capped CdTe quantum dots (QDs) have been first prepared via direct reaction of cadmium stearate with Te powder in N-oleoylmorpholine solvent, which was a kind of clean, air-stable and conveniently synthesized acylamide, and can readily dissolve precursors cadmium stearate and Te powder at a relative low temperature. The as-prepared CdTe QDs exhibited size-dependent optical properties, steep absorbance edge and narrow photoluminescence full width at half maximum. The high-resolution transmission electron microscopy images and X-ray diffraction revealed that the highly monodisperse CdTe QDs were of regular spherical morphology with zinc blende crystal structure displaying mean sizes of about 4 nm. The energy dispersed spectrometry measurement indicated the presence of Cd and Te, with the Cd:Te ratio being close to 1:1. Fourier transform infrared transmission spectra confirmed the existence of stearate on the CdTe QDs surfaces. The experimental results also demonstrated that the stearate-capped CdTe QDs had an unexpected good stability.  相似文献   

4.
Vapor deposition of CdTe from elemental cadmium and tellurium sources was studied as a function of the Cd/Te ratio, the supersaturation and the substrate temperature, in order to achieve optimum growth conditions for CdTe windows with low optical absorptivity in the infrared. A multisubstrate arrangement was designed to enable acquisition of growth data simultaneously on up to six specimens, each exposed to different growth conditions. Polycrystalline blanks up to 15 cm2 × 2 mm thick were grown at rates of 0.02-1.5 mm/h with the growth rate exhibiting sensitivity to all of the above variables. Our results show that stoichiometry (as well as free carrier concentrations) can be controlled by adjustments in the Cd/Te ratio and/or the substrate temperature. Similarly, microstructural aspects (e.g., grain and void size) are shown to exhibit strong sensitivity to variations in growth conditions.  相似文献   

5.
We have applied positron annihilation spectroscopy to study in-grown vacancy defects in bulk GaN crystals grown by the ammonothermal method. We observe a high concentration of Ga vacancy related defects in n-type samples in spite of the low growth temperature, suggesting that oxygen impurities promote the formation of vacancies also through other mechanisms than a mere reduction of thermodynamical formation enthalpy. On the other hand, no positron trapping at vacancy defects is observed in Mg-doped p-type samples, as expected when the Fermi level is close to the valence band and intrinsic defects are dominantly positively charged. Annealing of the samples at temperatures well above the growth temperature is found to change significantly the defect structure of the material.  相似文献   

6.
A concise discussion concerning the UHV ALE growth of ternary II-VI compounds is presented in this paper. Simultaneous reflection mass spectrometry (REMS) and reflection high energy electron diffraction (RHEED) measurements of the surface kinetic and structural parameters, respectively, governing the UHV ALE growth of Cd1-xZnxTe and Cd1-xMnxTe heteroepitaxial films are reported. In addition, a Monte-Carlo-based method for simulation of the UHV ALE process of CdTe (the model-compound for this growth technique) has been used for investigation of the Cd cation's fluxes reflected from the growing epilayer surface in different phases of the ALE process. The Cd+ ion-related REMS signals measured during CdTe growth have been compared with the simulation results.  相似文献   

7.
An abrupt change of the crystal growth rate at temperatures in the range 1150–1080°C affects the annihilation or the agglomeration of grown-in defects such as flow pattern defects (FPD), crystal originated particles (COP), laser scattering defects (LSTD) and the defects measured by an optical precipitate profiler (OPPDs). Moreover, it is demonstrated that the densities of FPDs and LSTDs correlate with each other, and also with the cooling rate in such a temperature range. These relationships were investigated by growing several silicon single crystals in 10 kinds of hot-zone (HZ) configurations designed by using a numerical simulation. The cooling rate from 1412°C, the melting point of silicon, to 1150°C does not seem to be so important for the generation or the annihilation of these defects.  相似文献   

8.
Oxygen precipitation in conventional and nitrogen co-doped heavily phosphorus (P)-doped Czochralski silicon (CZ-Si) crystal subjected to various high-temperature annealing in the range of 1000–1150 °C was comparatively investigated. It was revealed that oxygen precipitates hardly generated in conventional heavily P-doped CZ-Si; while they remarkably generated in the nitrogen co-doped one. Moreover, nitrogen doping could enhance oxygen precipitation during the prolonged annealing with a rapid thermal process (RTP) pre-treatment, but it has neglectable influence on oxygen precipitation for short-time annealing. It was believed that nitrogen co-doped heavily P-doped CZ-Si possesses nitrogen-related complexes that act as heterogeneous nuclei for super-saturated interstitial oxygen and then enhanced oxygen precipitation. Finally, it was found that nitrogen doping could hardly enhance oxygen precipitation in heavily P-doped CZ-Si at 1200 °C.  相似文献   

9.
Using a perfect single crystal sample of CdTe grown using PVT method, the electronic charge transfer in the II–VI compound semiconductor CdTe at 200 and 300 K has been evaluated using two different approaches: (1) by solving a quadratic equation involving the observed structure factors of h+k+l=4n+2 type reflections; and (2) by a graphical approach in which the observed and calculated atomic form factors are extrapolated to sinθ/λ=0, to determine the transferred charge. Precise X-ray structure factors collected using MoK radiation have been used for the analysis. The results obtained are reasonable and clearly indicate the ionicity by which charge is transferred from Cd to Te in CdTe.  相似文献   

10.
TEM observations were carried out on Bridgman-grown Pb1 − xSnxTe (x = 0.15) single crystals. Te precipitates with diameters of 1000–5000 Å and with densities of 105–106 cm-2 were observed. The orientation relationship between the Te precipitates and the Pb1 − xSnxTe matrix was determined from (110) electron diffraction patterns. This relationship was also confirmed from a high resolution lattice image. The origin of the precipitation is discussed, based on the phase diagram.  相似文献   

11.
The present work proposes a directional solidification method based on liquid melt cooling (LMC) technique to prepare large grain with single-variant set in Co–Ni–Ga alloys. The competitive growth from equaixed grains to steady columnar crystals with 1 1 0 orientation along the axis was observed. The directionally solidified rod has a uniform chemical composition. It can be also found that the unidirectional lamellar martensitic variants were well aligned in a whole grain, forming a single-variant state. Furthermore, the needle-like Ni3Ga-type γ′ precipitates were formed in alloy with lower growth velocity, and it exhibited the complicated microstructural evolution. At the lowermost part of rod-like crystal, a large number of precipitates were dispersed both in grain interiors and at boundaries but its amount decreased when the columnar crystals were formed and gradually increased again from bottom up to top in the whole rod.  相似文献   

12.
Defects in as-grown and heat-treated 150 and 200 mm Czochralski silicon crystals are investigated for different crystal pulling conditions and thermal treatments. First results are presented using noncontact carrier recombination imaging for detection of electrically active defects. The defect densities and sizes are compared with the results of computer modelling, suggesting that the observed defects in as-grown material are most likely large voids, possibly partially filled with silicon oxide. In contrast, the defects observed after prolonged heat treatments are silicon oxide precipitates with a density which is several orders of magnitude larger. The voids nucleate at temperatures above 1100°C by a homogeneous nucleation process and grow further to the observed size during further cooling of the crystal. They are responsible for the midfield breakdown of 10–50 nm gate oxides.  相似文献   

13.
Growth rate measurements of β-cyclodextrin in water were performed both ways. Firstly, experiments were conducted with single monocrystals located in a supersaturation-controlled flow cell. Diffusional limitations and perturbations due to a competition between surface secondary nucleation and growth at high level of supersaturation have been put in evidence. The evolution of the growth rate with supersaturation has been modelled with a BCF law, assuming a screw dislocation mechanism. Secondly seeded cooling batch trials have been carried on in a well-mixed suspension crystallizer in order to assess the growth rate of the seeds. Refractometry was used as an in situ sensor for measuring the evolution of the concentration of the solute. Measurements of the crystals size distribution of the seeds and of the final crystals are performed off line with laser diffraction technique. A kinetic law with three parameters allows a consistent assessment of the growth of the seeds. The comparison of the two sets of data shows that overall growth rate of the seed is partially limited by diffusion. Nevertheless, the estimation of a surface integration growth kinetic coefficient from batch trials is rather difficult. The theoretical framework of nucleation models developed by Mersmann et al. (Crystallization Technology Handbook, second ed., Marcel Dekker, New York, 2001, pp. 45–80 and 81–144) coupled with the estimated growth kinetics can therefore be used to better monitor the seeding process during batch crystallization operations so as to favor the growth of the seed crystals.  相似文献   

14.
A method of self-selecting vapour growth (SSVG) for bulk binary and multernary crystals of semiconducting materials is reviewed comprehensively for the first time. Although it has been developed over three decades, the method is less well known – even though it is physically distinct from the more widely used ‘Piper–Polich’ and ‘Markov–Davydov’ vapour transport bulk growth methods. The means by which growth takes place on a polycrystalline source to form a crystal free from the walls is described. Modelling and empirical observations have been used to establish the characteristics of the almost isothermal temperature fields that drive the transport in SSVG. It is demonstrated that precise control of thermal radiation is a fundamental requirement for tailoring the temperature distribution—a fact that has been used well in the design of horizontal tube furnace growth rigs. Achievements in the growth of useful PbS, PbSe, PbTe, CdTe and ZnTe compound crystals are described. The SSVG method has proved to be particularly well suited to the growth of solid solutions, and the results of growth experiments, and of compositional and structural analysis, are presented for Pb(Se,S), (Pb,Sn)Se, (Pb,Sn)Te, (Pb,Ge)Te, Cd(Te,Se), Cd(Te,S) and (Cd,Zn)Te. The excellent compositional uniformity delivered is attributed to entropy driven mixing in the low thermal gradients present in SSVG.

To date, most SSVG has been done at the <50 g level for research or small scale production use. Prospects for scaling up the growth are considered, there being no barriers identified in principle. However, there is a limitation in that the shape of the grown crystals is not accurately controlled at present. To overcome this, and to offer an alternative method of scaling up, the use of vertical tube systems is explored. A significant additional advantage of the vertical configuration is that it allows for continuous recycling of the source/crystal mass so as to continuously self-refine the increasingly uniform – and crystalline – product. Achievements to date in growing II–VI and IV–VI crystals are described for prototype vertical SSVG systems. Finally, future prospects for the SSVG method in terms of further developments to the method, and the specific materials that will benefit from it are highlighted.  相似文献   


15.
The large undercoolings required for glass formation have been achieved by the slow cooling (10-20°C/min) of liquid Te-Cu alloys in the form of a fine droplet emulsion. Within the region of glass formation, between 19 and 39 at.% Cu, DTA measurements indicate that the glass (Tg) and crystallization (Tc) temperatures during heating exhibit a broad maximum at the eutectic. During slow cooling of Te-rich alloy droplets, the maximum undercooling for nucleation increases from 213°C for pure Te to 264°C for Te-12.5 at.% Cu. An enhanced depression of the nucleation (Tn) temperature compared with the change of the liquidus develops in Te-rich alloys upon approaching the glass forming composition range and can be a useful feature in assessing the glass forming tendency. Thermal cycling experiments indicate that even at an undercooling of 181°C crystallization in an eutectic Te-29 at.% Cu alloy is limited by an inadequate nucleation rate in clean droplet samples. For a eutectic alloy, at undercoolings in excess of 200°C crystal nucleation does develop in the droplet samples, but complete crystallization is hindered by a rapidly rising liquid viscosity with increased undercooling.  相似文献   

16.
We explored some unique defects in a batch of cadmium zinc telluride (CdZnTe) crystals, along with dislocations and Te-rich decorated features, revealed by chemical etching. We extensively investigated these distinctive imperfections in the crystals to identify their origin, dimensions, and distribution in the bulk material. We estimated that these features ranged from 50 to 500 μm in diameter, and their depth was about ∼300 μm. The density of these features ranged between 2×102 and 1×103 per cm3. We elaborated a model of them and projected their effect on charge collection and spectral response. In addition, we fabricated detectors with these defective crystals and acquired fine details of charge-transport phenomena over the detectors’ volume using a high-spatial resolution (25 μm) X-ray response mapping technique. We related the results to better understand the defects and their influence on the charge-transport properties of the devices. The role of the defects was identified by correlating their signatures with the findings from our theoretical model and our experimental data.  相似文献   

17.
In this work, we present growth rate data of sucrose crystals in the presence of impurities that can be used by both sugar technologists and crystal growth scientists. Growth rate curves measured in a pilot-scale evaporative crystallizer suggest a period of slow growth that follows the seeding of crystals into supersaturated technical solutions. The observed trend was enhanced by adding typical sugarcane impurities such as starch, fructose or dextran to the industrial syrups. Maximum growth rates of sucrose resulted at intermediate rather than high supersaturation levels in the presence of the additives. The effects of the additives on the sucrose solubility and sucrose mass transfer in solution were taken into account to explain the observed crystal growth kinetics. A novel mechanism was identified of unsteady-state adsorption of impurities at the crystal surface and their gradual replacement by the crystallizing solute towards the equilibrium occupation of the active sites for growth. Specifically designed crystallization experiments at controlled supersaturation confirmed this mechanism by showing increasing crystal growth rates with time until reaching a steady-state value for a given supersaturation level and impurity content.  相似文献   

18.
Indium-doped Cd1−xZnxTe (CZT:In) single crystals were annealed by a two-step method, including a high-temperature step and a low-temperature step in sequence. IR transmittance spectrum, IV curve and PL spectrum were used to characterize the CZT single crystals. After annealing, the opto-electrical properties of the CZT:In crystals were improved obviously. The average IR transmittance was remarkably increased by about 23%, and the resistivity was enhanced by as high as four orders of magnitude. In the PL spectra, the intensity of the (D0, X) peak prominently increased, and the full-width-at-half-maximum was reduced. Meanwhile, the intensity of the DAP peak decreased greatly, and the structure became practically indistinguishable from the background. Moreover, the intensity of the Dcomplex peak also decreased. The investigation shows that these improvements in the physical properties after annealing are due to variations in the micro-structures. The two-step annealing method can eliminate precipitates/inclusions, remove impurities, compensate Cd vacancies, decrease dislocations and reduce internal stress.  相似文献   

19.
This review article aims to clarify a mechanism of point defects formation in a CZ Si crystal through an experimental arrangement using the two kinds of heat shields with different slow-pulling periods. Point defects in a melt grown silicon crystal have been studied for a long time. The author and his co-researchers have reported about “Mechanism for generating interstitial atoms by thermal stress during silicon crystal growth” [in Progress in Crystal Growth and Characterization of Materials, 66 (2019) 36-46]. The experimental arrangement includes constant growing, changing pulling rate and finally detaching crystals from the melt. The two types of heat shields were used to change the cooling history of the grown crystals, for changing a temperature gradient at a bulk part in the grown crystal, Gb. In order to prove that the formation of an interstitial region or a boundary of vacancies (Vs)/interstitials (Is) in a silicon crystal is a phenomenon of relaxing thermal stress, the author explains that a Gb in a crystal forms thermal stress and causes some silicon atoms at lattice positions to move to the closest interstitial sites to relax the stress. The author defines a new term of metastable interstitial atom, I’, or I's as the plural of I’. The I’ coexists with the metastable vacancy V’ from where the I’ is displaced. The plural of V’ is defined to be V's. The author defines the above state to be a complex (I’+ V’), or (I ’+ V’)s as the plural of (I’+ V’), and explains that the (I’+ V’) s convert to Is and form the Is region. The (I’+ V’) is considered as the Frenkel pair-like complex.The crystals were firstly pulled with a high pulling rate, and the pulling rate was consequently decreased to a slow one. Then the crystals were pulled with the slow constant pulling rate for different periods making different cooling processes. Finally, the grown crystals were detached from the melt and cooled rapidly. Characterization of defects, such as Vs, Is, and defect-free (D-F) regions were identified in X-ray topographs (XAOP(s)). Wafer lifetime mapping (WLTM(s)) allows confirming dislocation loop (DL) regions. The results show that the Is are generated depending on the pulling period of the slow pulling and the shapes of the heat shields. The Is and DL regions are formed in a region at temperatures near the melting point. The Is form an Is region through a defect-free (D-F) region, forming the Vs/Is boundary. When the thermal stress weakens, the DL region changes to the Is region; the Is region changes to the D-F region; and the D-F region changes to the Vs region. Temperature gradient distribution is induced toward various directions at different parts of the growing crystal depending on the different slow-pulling periods. The temperature gradient, Gb, includes a temperature gradient from the cooled region shaded by the heat shield to the growth interface and a temperature gradient from the upper surface cooled during the long-time growth to the growth interface. The Gb exceeding a certain threshold at near the melting point forms thermal stress, generating Is to relax the stress.  相似文献   

20.
HF:H2O2:H2O solution (40%wt.HF: 30wt.%H2O2: H2O, 3:2:1 by volume) was used to reveal extended defects (line, face and volume defects) in bulk ZnTe crystals grown from Te solution. The etch patterns were analyzed based on their size, shape and distribution. The etch figures, both in the shape of pits and hillocks with high resolution, show forms controlled by the symmetries of the respective faces were produced. Two different sizes of pits were observed, the larger‐size pits correspond to dislocations penetrating the surface, however, the smaller‐size texture pits are produced on the defect‐free region, which serve as standard pits on respect faces. The face defects, such as grain boundaries, sub‐grain boundaries, dislocation walls, twins and stacking faults, can be all displayed clearly. Another essential feature of the etchant is that, it can effectively dissolve Te‐rich phase (Te inclusion/precipitates), which makes it promising to reveal the shape of this volume defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号