首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With a Brewer spectrophotometer, an estimation of total ozone is made from relative measurements of direct-sun ultraviolet radiation at six wavelengths from 300 to 320 nm. During normal operations, one of six neutral-density filters is selected automatically to maintain the detector in its linear response range. On the basis of these standard direct-sun observations, estimates of aerosol optical depth can be derived, provided that a calibration of the relative measurements is available for each neutral-density filter. To obtain the calibration, we implemented a routine to measure direct-sun signals with a fixed neutral-density filter and applied the Langley method to the measured photon counts. Results show that if a sufficiently large number of cloud-free mornings or afternoons is available, a reliable calibration can be achieved even at sea-level sites that are characterized by large aerosol variability. The derived aerosol optical depths appear consistent with those measured independently by a multifilter rotating shadow-band radiometer. Existing relatively long-term series of direct-sun ozone measurements by Brewer instruments may be used for retrieval of aerosol optical depth.  相似文献   

2.
Bais AF 《Applied optics》1997,36(21):5199-5204
A methodology for the absolute calibration of spectral measurements of direct solar ultraviolet radiation, performed with a Brewer spectrophotometer is presented. The method uses absolute measurements of global and diffuse solar irradiance obtained practically simultaneously at each wavelength with the direct-Sun component. On the basis of this calibration, direct-Sun spectra, measured over a wide range of solar zenith angles at a high altitude site, were used to determine the extraterrestrial solar spectrum by applying the Langley extrapolation method. Finally this spectrum is compared with a solar spectrum derived from the airborne tunable laser absorption spectrometer 3 Space Shuttle mission, showing an agreement of better than +/-3%.  相似文献   

3.
Multifilter rotating shadowband radiometer (MFRSR) calibration values for aerosol optical depth (AOD) retrievals were determined by means of the general method formulated by Forgan [Appl. Opt.33, 4841 (1994)] at a polluted urban site. The obtained precision is comparable with the classical method, the Langley plot, applied on clean mountaintops distant of pollution sources. The AOD retrieved over S?o Paulo City with both calibration procedures is compared with the Aerosol Robotic Network data. The observed results are similar, and, except for the shortest wavelength (415 nm), the MFRSR's AOD is systematically overestimated by approximately 0.03.  相似文献   

4.
The complete calibration of a double six-port network analyzer includes constants for the measurement of wave ratios (S-parameters) as well as constants for absolute power level measurements for nonlinear device characterization. This paper describes how a complete set of constants can be obtained for on-wafer measurements from a complete calibration in a coaxial measurement plane and a subsequent on-wafer calibration with the minimum number of elements  相似文献   

5.
A filter radiometer was designed to use for the realization of optical radiometric scales with high accuracy at the Ulusal Metroloji Enstitüsü, Turkey. The primary aim in developing the new filter radiometer is to improve the traceability and accuracy of radiometric quantities of the Système International (d’unités) (SI units). This filter radiometer basically consists of a trap detector, a set of temperature-controlled filters and a precision aperture. Complete characterization of the radiometer is described in this paper. The absolute calibration of the filter radiometer is performed by using an electrical substitution cryogenic radiometer at discrete laser lines with a relative uncertainty of the order of 0.01%.  相似文献   

6.
7.
Gröbner J 《Applied optics》2003,42(18):3516-3521
A new entrance optic for a Brewer spectrophotometer has been designed and tested both in the laboratory and during solar measurements. The integrated cosine response deviates by 2.4% from the ideal, with an uncertainty of +/- 1%. The systematic uncertainties of global solar irradiance measurements with this new entrance optic are considerably reduced compared with measurements with the traditional design. Simultaneous solar irradiance measurements between the Brewer spectrophotometer and a spectroradiometer equipped with a state-of-the-art shaped diffuser agreed to within +/- 2% during a five-day measurement period.  相似文献   

8.
Two different instruments for measuring the spectral UV irradiance were used in a field comparison study in July 2000 in Rome, Italy: a Brewer spectrophotometer and a moderate-bandwidth filter radiometer (GUV-511C). The Brewer is designed to measure the solar spectral irradiances in the region from 290 nm to 325 nm with a spectral resolution of 0.5 nm. The GUV-511C measures hand-averaged spectral irradiance at four wavelengths: 305, 320, 340 and 380 nm with a bandwidth depending on the filter type for each channel (about 10 nm full width half maximum, FWHM). Comparisons between the two instruments were made for 5 days for the two wavelengths 305 and 320 nm under different meteorological conditions with the Brewer taken as the reference.  相似文献   

9.
A new algorithm has been developed for simultaneous retrieval of aerosol optical properties and chlorophyll concentrations in case I waters. This algorithm is based on an improved complete model for the inherent optical properties and accurate simulations of the radiative transfer process in the coupled atmosphere-ocean system. It has been tested against synthetic radiances generated for the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) channels and has been shown to be robust and accurate. A unique feature of this algorithm is that it uses the measured radiances in both near-IR and visible channels to find that combination of chlorophyll concentration and aerosol optical properties that minimizes the error across the spectrum. Thus the error in the retrieved quantities can be quantified.  相似文献   

10.
A measurement campaign was organized in March 1999 in the Bavarian Alps as part of the European project, Characteristics of the UV Radiation Field in the Alps (CUVRA), to analyze the effect of altitude, aerosols, and snow cover on ground-level UV spectral irradiance. We present the results of simultaneous measurements of aerosol optical depth (AOD) made at various sites on two cloudless days in March 1999. The two days exhibited different aerosol conditions. Results derived from spectral measurements of UV irradiance are compared with data from filter radiometer measurements made at discrete wavelengths extending from the UV to the near IR. The different methods generated values for the AOD that were in good agreement. This result confirms that one can use either method to retrieve the AOD with an uncertainty of approximately 0.03-0.05. On 18 March, high turbidity was observed at low altitude (400-nm AOD approximately 0.5 at 700 m above sea level), and the AOD decreased regularly with altitude; on 24 March, the turbidity was much less (0.11 at 700 m above sea level). On both days very low AODs (0.05-0.09) were measured at 3000 m above sea level. The spectral dependence of the AOD is often parameterized by the angstrom relationship; the alpha parameter is generally difficult or impossible to retrieve from spectral measurements because of the relatively narrow wavelength range (320-400 nm), and only one of the spectro-radiometers used during the campaign permits this retrieval. In most cases, during this field campaign, alpha was found by filter sunphotometers to be 1.1-1.5.  相似文献   

11.
The absorption coefficient of chromophoric dissolved organic matter (CDOM) at 355 nm has been retrieved from airborne laser-induced and water Raman-normalized CDOM fluorescence. Four combined airborne and ship field experiments have demonstrated that (1) the airborne CDOM fluorescence-to--water Raman ratio is linearly related to concurrent quinine-sulfate-standardized CDOM shipboard fluorescence measurements over a wide range of water masses (coastal to blue water); (2) the vicarious calibration of the airborne fluorosensor in units traceable to a fluorescence standard can be established and then maintained over an extended time period by tungsten lamp calibration; (3) the vicariously calibrated airborne CDOM fluorescence-to-water Raman ratio can be directly applied to previously developed shipboard fluorescence-to-absorption algorithms to retrieve CDOM absorption; and (4) the retrieval is not significantly affected by long-path multiple scattering, differences in attenuation at the excitation and emission wavelengths, or measurement in the 180° backscatter configuration. Airborne CDOM absorption measurements will find immediate application to (a) forward and inverse modeling of oceanic water-leaving radiance and (b) validation of satellite-retrieved products such as CDOM absorption.  相似文献   

12.
The multifilter rotating shadow-band radiometer is a ground-based instrument that uses independent interference-filter-photodiode detectors and the automated rotating shadow-band technique to make spectrally resolved measurements at seven wavelength passbands (chosen at the time of manufacture between 350 nm and 1.7 μm) of direct-normal, total-horizontal, and diffuse-horizontal irradiances. This instrument achieves an accuracy in direct-normal spectral irradiance comparable with that of tracking radiometers, and it is more accurate than conventional instruments for the determination of the diffuse and total-horizontal spectral irradiances because the angular acceptance function of the instrument closely approximates the ideal cosine response, and because the measured direct-normal component can be corrected for the remaining angular acceptance error. The three irradiance components are measured with the same detector for a given wavelength. Together with the automated shadow-band technique, this guarantees hat the calibration coefficients are identical for each, thus reducing errors when one compares them (as opposed to measurements made with independent instruments). One can use the direct-normal component observations for Langley analysis to obtain depths and to provide an ongoing calibration against the solar constant by extrapolation to zero air mass. Thus the long-term stability of all three measured components can be tied to the solar constant by an analysis of the routinely collected data.  相似文献   

13.
Asseng H  Ruhtz T  Fischer J 《Applied optics》2004,43(10):2146-2155
We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements.  相似文献   

14.
Zieger P  Ruhtz T  Preusker R  Fischer J 《Applied optics》2007,46(35):8542-8552
We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed.  相似文献   

15.
Takamura T  Sasano Y  Hayasaka T 《Applied optics》1994,33(30):7132-7140
Tropospheric aerosols have been observed for the period from November 1990 to April 1992 with a lidar, a sun photometer, and an optical particle counter. Variations of aerosol optical thickness derived from the lidar and the sun photometer data and measurements are presented. The simultaneous measurements of these instruments also allowed us to estimate the extinction-to-backscatter ratio (S(1)), which ranged from 20 to 70. Comparison of optical thicknesses derived from both instruments clearly shows the effect of Mt. Pinatubo's eruption and the temporal variation of optical thickness in the stratosphere over 12 km. The possible range of the complex refractive index for the columnar mean aerosols can be deduced from the probable range of S(1) derived by the use of an S(1) diagram as a function of complex refractive index (m). The imaginary part of m can be estimated provided that the real part of m is known.  相似文献   

16.
Grey WM  North PR  Los SO 《Applied optics》2006,45(12):2786-2795
We present a robust and computationally efficient method for retrieving aerosol optical depth (AOD) from top-of-atmosphere ATSR-2 (Along-Track Scanning Radiometer) and AATSR (Advanced ATSR) reflectance data that is formulated to allow retrieval of the AOD from the 11 year archive of (A)ATSR data on the global scale. The approach uses a physical model of light scattering that requires no a priori information on the land surface. Computational efficiency is achieved by using precalculated lookup tables (LUTs) for the numerical inversion of a radiative-transfer model of the atmosphere. Estimates of AOD retrieved by the LUT approach are tested on AATSR data for a range of global land surfaces and are shown to be highly correlated with sunphotometer measurements of the AOD at 550 nm. (Pearson's correlation coefficient r(2) is 0.71.).  相似文献   

17.
Optical and visual measurement technology is used widely in field that involve geometric measurements, and among such technology are laser and vision-based displacement measuring modules (LVDMMs). The displacement transformation coefficien (DTC) of an LVDMM changes with the coordinates in the camera image coordinate system during the displacement measuring process, and these changes affect the displacement measurement accuracy of LVDMMs in the full fiel of view (FFOV). To give LVDMMs higher accu...  相似文献   

18.
Kindel BC  Qu Z  Goetz AF 《Applied optics》2001,40(21):3483-3494
A radiometrically stable, commercially available spectroradiometer was used in conjunction with a simple, custom-designed telescope to make spectrally continuous measurements of solar spectral transmittance and directly transmitted solar spectral irradiance. The wavelength range of the instrument is 350-2500 nm and the resolution is 3-11.7 nm. Laboratory radiometric calibrations show the instrument to be stable to better than 1.0% over a nine-month period. The instrument and telescope are highly portable, can be set up in a matter of minutes, and can be operated by one person. A method of absolute radiometric calibration that can be tied to published top-of-the-atmosphere (TOA) solar spectra in valid Langley channels as well as regions of strong molecular absorption is also presented. High-altitude Langley plot calibration experiments indicate that this technique is limited ultimately by the current uncertainties in the TOA solar spectra, approximately 2-3%. Example comparisons of measured and modtran-modeled direct solar irradiance show that the model can be parameterized to agree with measurements over the large majority of the wavelength range to the 3% level for the two example cases shown. Side-by-side comparisons with a filter-based solar radiometer are in excellent agreement, with a mean absolute difference of tau = 0.0036 for eight overlapping wavelengths over three experiment days.  相似文献   

19.
This paper presents the application of the spectral parameter power series method [Pauli, Math Method Appl Sci 33:459–468 (2010)] for constructing the Green’s function for the elliptic operator $-\nabla \cdot I\nabla $ in a rectangular domain $\varOmega \subset \mathbb R ^{2}$ , where $I$ admits separation of variables. This operator appears in the transport-of-intensity equation (TLE) for undulatory phenomena, which relates the phase of a coherent wave with the axial derivative of its intensity in the Fresnel regime. We present a method for solving the TIE with Dirichlet boundary conditions. In particular, we discuss the case of an inhomogeneous boundary condition, a problem that has not been addressed specifically in other works, under the restricted assumption that the intensity $I$ admits separation of variables. Several simulations show the validity of the method.  相似文献   

20.
We present the development of a semi-analytical algorithm for optical particle sizing in disperse media. The algorithm is applied to the specific case of water clouds. However, it can be extended with minor modifications to other types of light-scattering medium. It is assumed that the optical thickness tau of the medium is large and the probability of photon absorption beta is small. Thus the optical particle-sizing problem is studied in the regime of highly developed multiple light scattering. It was found that the degree of polarization in visible and near-infrared channels provides us with information both on the effective size of droplets and on the optical thickness tau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号