首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prepared an iridium polymer complex having 2‐phenylpyridine as a η2‐cyclometallated ligand, a new OLED containing a solution‐processible iridium polymer as a host, and a phosphorescent iridium complex, [Ir(piq‐tBu)3] as a guest. This is the first example to apply a phosphorescent iridium complex polymer to a host material in a phosphorescent OLED. A phosphine copolymer ligand made from methyl methacrylate (MMA) and 4‐styryldiphenylphosphine can be used as an anchor polymer, which coordinates to luminescent iridium units to form a host metallopolymer easily. The OLED containing the host iridium‐complex polymer film, in which the guest, 2 wt % Ir(piq‐tBu)3, was doped, showed red electroluminescence as a result of efficient energy transfer from the iridium polymer host to the iridium guest. The maximum current efficiency of the device was 1.00, suggesting that a soluble iridium complex polymer can be used as a solution‐processible polymer host in EL devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4358–4365, 2009  相似文献   

2.
The commercial breakthrough of phosphorescent organic white light sources is presently hampered due to the unavailability of a stable blue phosphorescent emitter material. Moreover, only few analytical investigations have been made regarding the chemical degradation of the phosphorescent emitter materials during the processing or the operation of the devices. Organic light emitting devices (OLEDs) containing phosphorescent metal complexes with iridium as central ion were investigated. Special attention was paid to the chemical degradation of the material. The devices were analyzed by means of high performance liquid chromatography coupled with mass spectrometry (HPLC/MS). Electron spray ionization (ESI) was employed as ionization source. Isomerization phenomena of the blue-green emitting heteroleptic iridium complex FIrpic could be observed after the device manufacture and after operation. These findings could give hints on the mechanisms that influence the lifetime of PhOLEDs based on FIrpic or similar blue emitters.  相似文献   

3.
Pyridinyl-carbazole fragments containing low molar mass compounds as host derivatives H1 and H2 were synthesized, investigated, and used for the preparation of electro-phosphorescent organic light-emitting devices (PhOLEDs). The materials demonstrated high stability against thermal decomposition with the decomposition temperatures of 361–386 °C and were suitable for the preparation of thin amorphous and homogeneous layers with very high values of glass transition temperatures of 127–139 °C. It was determined that triplet energy values of the derivatives are, correspondingly, 2.82 eV for the derivative H1 and 2.81 eV for the host H2. The new derivatives were tested as hosts of emitting layers in blue, as well as in green phosphorescent OLEDs. The blue device with 15 wt.% of the iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic) emitter doping ratio in host material H2 exhibited the best overall characteristics with a power efficiency of 24.9 lm/W, a current efficiency of 23.9 cd/A, and high value of 10.3% of external quantum efficiency at 100 cd/m2. The most efficient green PhOLED with 10 wt% of Ir(ppy)3 {tris(2-phenylpyridine)iridium(III)} in the H2 host showed a power efficiency of 34.1 lm/W, current efficiency of 33.9 cd/A, and a high value of 9.4% for external quantum efficiency at a high brightness of 1000 cd/m2, which is required for lighting applications. These characteristics were obtained in non-optimized PhOLEDs under an ordinary laboratory atmosphere and could be improved in the optimization process. The results demonstrate that some of the new host materials are very promising components for the development of efficient phosphorescent devices.  相似文献   

4.
采用具有优良电子传输特性的铍金属配合物二合铍(Ⅱ)(Bempp)作为磷光客体材料二(2-苯基吡啶)(N,N'-二异丙基苯甲脒)合铱(Ⅲ)(PPP)的主体材料制备磷光电致发光器件. 与经典的空穴传输型主体材料4,4'-二(N-咔唑)联苯(CBP)相比, Bempp更有利于空穴、 电子的注入及传输的平衡, 与PPP间存在更高效的能量转移. 该器件的各项性能指标, 包括最大效率和流明效率(63.1 cd/A和54.0 lm/W), 均明显高于采用CBP作为主体材料的磷光器件.  相似文献   

5.
设计合成了以苯基苯并咪唑和吡啶三唑为配体的高效的黄绿光铱配合物(M1),并通过Suzuki缩聚反应制备了以磷光铱配合物客体为中心核、蓝光荧光聚(芴-咔唑)主体为臂的星型磷光聚合物(P2.5、P5.0和P10),着重对M1和聚合物的发光性能、电化学性能及热稳定性能进行研究。 结果表明,M1具有较高的荧光量子效率(32.06%),其荧光寿命为1.09 μs,聚合物荧光寿命为2.223.93 μs,均表现为磷光;通过调节主客体的比例,利用主客体的部分能量转移机制,来实现聚合物的不同光色,发光颜色可从蓝光向黄光变化;当M1摩尔分数为2.5%时,获得的白光聚合物(P2.5)具有较好的发光性能和热稳定性能,色坐标为(0.30,0.32),位于白光区域,其最高占有轨道(HOMO)能级和最低未占有轨道(LUMO)能级分别为5.49和2.43 eV,荧光量子产率为14.3%,荧光寿命为2.22 μs。  相似文献   

6.
We have synthesized a blue‐light‐emitting polyfluorene (PF) derivative ( PF‐CBZ‐OXD ) that presents bulky hole‐transporting carbazole and electron‐transporting oxadiazole pendent groups functionalized at the C‐9 positions of alternating fluorene units. The results from photoluminescence and electrochemical measurements indicate that both the side chains and the PF main chain retain their own electronic characteristics in the copolymer. An electroluminescent device incorporating this polymer as the emitting layer was turned on at 4.5 V; it exhibited a stable blue emission with a maximum external quantum efficiency of 1.1%. Moreover, we doped PF‐CBZ‐OXD and its analogue PF‐TPA‐OXD with a red‐light‐emitting iridium phosphor for use as components of phosphorescent red‐light emitters to investigate the effect of the host's HOMO energy level on the degree of charge trapping and on the electrophosphorescent efficiency. We found that spectral overlap and individual energy level matching between the host and guest were both crucial features affecting the performance of the electroluminescence devices. Atomic force microscopy measurements indicated that the dipolar nature of PF‐CBZ‐OXD , in contrast to the general nonpolarity of polydialkylfluorenes, provided a stabilizing environment that allowed homogeneous dispersion of the polar iridium triplet dopant. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2925–2937, 2007  相似文献   

7.
A series of blue phosphorescent iridium(III) complexes 1-4 with nonconjugated N-benzylpyrazole ligands were synthesized and their structural, electrochemical, and photophysical properties were investigated. Complexes 1-4 exhibit phosphorescence with yields of 5-45 % in degassed CH2Cl2. Of the compounds, 1 showed emission that was nearly true blue at 460 nm with a lack of vibronic progression. These photophysical data clearly demonstrate that the methylene spacer of the cyclometalated N-benzylpyrazole chelate effectively interrupts the pi conjugation upon reacting with a third L X chelating chromophore. This gives a feasible synthesis for the blue phosphorescent complexes with a sufficiently large energy gap. In another approach, these complexes were investigated for their suitability for the host material in phosphorescent OLEDs. The device was synthesized by using 1 as the host for the green-emitting [Ir(ppy)3] dopant, which exhibits an external quantum conversion efficiency (EQE) of up to 11.4 % photons per electron (and 36.6 cdA(-1)), with 1931 Commission Internationale de L'Eclairage (CIE) coordinates of (0.30, 0.59), a peak power efficiency of 21.7 lmW(-1), and a maximum brightness of 32000 cdm(-2) at 14.5 V. At the practical brightness of 100 cdm(-2), the efficiency remains above 11 % and 18 lmW(-1), demonstrating its great potential as the host material for phosphorescent organic light-emitting diodes.  相似文献   

8.
红色铱配合物磷光材料及器件的研究进展   总被引:2,自引:2,他引:0  
有机电致发光器件具有驱动电压低、高亮度、高效率等优点,引起了研究人员的广泛关注,在固态照明和平板显示领域具有广阔应用前景。 在绿、蓝、红三基色器件中,绿光器件和蓝光器件的性能普遍优于红光器件,基本满足了产业化的需要;目前红色有机电致发光材料及器件的研究进展相对缓慢。 因为红光材料的能隙较窄,致使主客体材料之间能级匹配困难,导致红光器件普遍效率低、色纯度差,但是,红光材料是获得白光器件必不可少的材料。 因此,如何获得高性能红光材料对于有机电致发光器件的发展至关重要。 本文综述了近年来红色铱配合物磷光材料及器件的研究进展,对提升效率和色纯度的方法进行重点阐述;并结合现有工作,对红色有机电致磷光材料与器件的前景进行展望。  相似文献   

9.
Energy transfer and triplet exciton confinement in polymer/phosphorescent dopant systems have been investigated. Various combinations of host‐guest systems have been studied, consisting of two host polymers, poly(vinylcarbazole) (PVK) and poly[9,9‐bis(octyl)‐fluorene‐2,7‐diyl] (PF), blended with five different phosphorescent iridium complexes with different triplet energy levels. These combinations of hosts and dopants provide an ideal situation for studying the movement of triplet excitons between the host polymers and dopants. The excitons either can be confined at the dopant sites or can flow to the host polymers, subject to the relative position of the triplet energy levels of the material. For PF, because of its low triplet energy level, the exciton can flow back from the dopants to PF when the dopant has a higher triplet energy and subsequently quench the device efficiency. In contrast, efficient electrophosphorescence has been observed in doped PVK films because of the high triplet energy level of PVK. Better energy transfer from PVK to the dopants, as well as triplet exciton confinement on the dopants, leads to higher device performance than found in PF devices. Efficiencies as high as 16, 8.0, and 2.6 cd/A for green, yellow, and red emissions, respectively, can be achieved when PVK is selected as the host polymer. The results in this study show that the energy transfer and triplet exciton confinement have a pronounced influence on the device performance. In addition, this study also provides material design and selection rules for the efficient phosphorescent polymer light‐emitting diodes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2681–2690, 2003  相似文献   

10.
有机电致磷光材料可以同时利用单线态和三线态激子发光,具有发光效率高等优点,成为近年来研究的热点。本文综述了以铱为内核的有机电致磷光材料的研究进展、存在问题和研究趋势,并简要介绍了用于制作有机磷光器件的主体材料。  相似文献   

11.
有机电致磷光材料可以同时利用单线态和三线态激子发光,具有发光效率高等优点,成为近年来研究的热点。本文综述了以铱为内核的有机电致磷光材料的研究进展、存在问题和研究趋势,并简要介绍了用于制作有机磷光器件的主体材料。  相似文献   

12.
To examine the quenching of a triplet exciton by low triplet energy (E(T)) polymer hosts with different chain configurations for high E(T) phosphor guests, the quenching rate constant measurements were carried out and analyzed by the standard Stern-Volmer equation. We found that an effective shielding of triplet energy transfer from a high E(T) phosphor guest to a low E(T) polymer host is possible upon introducing dense side chains to the polymer to block direct contact from the guest such that the possibility of Dexter energy transfer between them is reduced to a minimum. Together with energy level matching to allow charge trapping on the guest, high device efficiency can be achieved. The extent of shielding for the systems of phenylene-based conjugated structures from iridium complexes follows the sequence di-substituted (octoxyl chain) in the para position (dC8OPPP) is greater than monosubstituted (mC8OPPP) and the PPPs with longer side chains are much higher than a phenylene tetramer (P4) with two short methyl groups. Further, capping the dialkoxyl-susbstituents with a carbazole (Cz) moiety (CzPPP) provides enhanced extent of shielding. Excellent device efficiency of 30 cd/A (8.25%) for a green electrophosphorescent device can be achieved with CzPPP as a host, which is higher than that of dC8OPPP as host (15 cd/A). The efficiency is higher than those of high E(T) conjugated polymers, poly(3,6-carbazole) derivatives, as hosts (23 cd/A). This observation suggests a new route for molecular design of electroluminescent polymers as a host for a phosphorescent dopant.  相似文献   

13.
Solid-state white light-emitting electrochemical cells (LECs) show promising advantages of simple solution fabrication processes, low operation voltage, and compatibility with air-stable cathode metals, which are required for lighting applications. To date, white LECs based on ionic transition metal complexes (iTMCs) have shown higher device efficiencies than white LECs employing other types of materials. However, lower emission efficiencies of red iTMCs limit further improvement in device performance. As an alternative, efficient red CdZnSeS/ZnS core/shell quantum dots were integrated with a blue iTMC to form a hybrid white LEC in this work. By achieving good carrier balance in an appropriate device architecture, a peak external quantum efficiency and power efficiency of 11.2 % and 15.1 lm W−1, respectively, were reached. Such device efficiency is indeed higher than those of the reported white LECs based on host–guest iTMCs. Time- and voltage-dependent electroluminescence (EL) characteristics of the hybrid white LECs were studied by means of the temporal evolution of the emission-zone position extracted by fitting the simulated and measured EL spectra. The working principle of the hybrid white LECs was clarified, and the high device efficiency makes potential new white-emitting devices suitable for solid-state lighting technology possible.  相似文献   

14.
Simple is good! Based on biphenyl molecules, two bipolar host materials with high triplet energies have been rationally designed, synthesized, and fully characterized. Deep blue phosphorescent organic light-emitting diodes, which employ the new hosts and an iridium(III) complex as triplet emitter, show a maximum current efficiency of 40 cd A(-1), a maximum power efficiency of 36 lm W(-1), and a maximum external quantum efficiency of 19.5 %.  相似文献   

15.
本文通过多步有机反应制备了化合物9-苯基-9′-(4-二苯基氧化膦)苯基-氧杂蒽[diphenyl(4-(9-phenyl-9H-xanthen-9-yl)phenyl)phosphine oxide,DPPO],低温磷光发射光谱测试表明该化合物具有高的三线态能级(2.88eV),它可以作为天蓝色磷光发光材料双(4,6-二氟苯基吡啶-N,C2)吡啶甲酰合铱[bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(Ⅲ),FIrpic,ET=2.62eV]的主体材料.将主体材料DPPO用于蓝色磷光有机发光二极管中,该器件在100cd/m2的亮度下,电流效率和流明效率分别达到30.6cd/A和19.2lm/W,最大外量子效率达到13.6%.  相似文献   

16.
We report phosphorescent sensitized fluorescent near-infrared (NIR) light-emitting electrochemical cells (LECs) utilizing a phosphorescent cationic transition metal complex [Ir(ppy)(2)(dasb)](+)(PF(6)(-)) (where ppy is 2-phenylpyridine and dasb is 4,5-diaza-9,9'-spirobifluorene) as the host and two fluorescent ionic NIR emitting dyes 3,3'-diethyl-2,2'-oxathiacarbocyanine iodide (DOTCI) and 3,3'-diethylthiatricarbocyanine iodide (DTTCI) as the guests. Photoluminescence measurements show that the host-guest films containing low guest concentrations effectively quench host emission due to efficient host-guest energy transfer. Electroluminescence (EL) measurements reveal that the EL spectra of the NIR LECs doped with DOTCI and DTTCI center at ca. 730 and 810 nm, respectively. Moreover, the DOTCI and DTTCI doped NIR LECs achieve peak EQE (power efficiency) up to 0.80% (5.65 mW W(-1)) and 1.24% (7.84 mW W(-1)), respectively. The device efficiencies achieved are among the highest reported for NIR LECs and thus confirm that phosphorescent sensitized fluorescence is useful for achieving efficient NIR LECs.  相似文献   

17.
A blue‐emitting iridium dendrimer, namely B‐G2 , has been successfully designed and synthesized with a second‐generation oligocarbazole as the dendron, which is covalently attached to the emissive tris[2‐(2,4‐difluorophenyl)‐pyridyl]iridium(III) core through a nonconjugated link to form an efficient self‐host system in one dendrimer. Unlike small molecular phosphors and other phosphorescent dendrimers, B‐G2 shows a continuous enhancement in the device efficiency with increasing doping concentration. When using neat B‐G2 as the emitting layer, the nondoped device is achieved without loss in efficiency, thus giving a state‐of‐art EQE as high as 15.3 % (31.3 cd A?1, 28.9 lm W?1) along with CIE coordinates of (0.16, 0.29).  相似文献   

18.
The progress of white organic light‐emitting diodes (WOLEDs) via adopting fluorescent and phosphorescent organic materials have attracted commercial interest for their broad range of visible spectrum and potential of 100 % internal quantum efficiency. In this account, smart molecular designs for developing efficient phosphorescent host and good color purity blue fluorescent emitters are prepared to be discussed, especially donor‐acceptor modification to regulate their triplet states and bipolar transport properties. Rational device configuration design strategies were also introduced by cooperating with efficient conventional fluorescent and thermally activated delayed fluorescent emitting molecules to achieve full exciton utilization and simplified device structures, further suggesting perspectives of potentially low‐cost, ideal performance and promoted operational lifetime in WOLED devices.  相似文献   

19.
以氟代二苯基苯并咪唑为主配体,结合不同的辅助配体乙酰丙酮(对应配合物Ir-1a~Ir-3a)、2-吡啶甲酸(对应配合物Ir-1b~Ir-3b)和2-(5-三氟甲基-2H-[1,2,4]三唑-3-基)-吡啶(tftp,对应配合物Ir-1c~Ir-3c),设计并合成了9个新颖的苯并咪唑铱(Ⅲ)配合物Ir-1a~Ir-3c....  相似文献   

20.
Low color temperature candlelight organic light-emitting diodes (LEDs) are human and environmentally friendly because of the absence of blue emission that might suppress at night the secretion of melatonin and damage retina upon long exposure. Herein, we demonstrated a lighting device incorporating a phenoxazine-based host material, 3,3-bis(phenoxazin-10-ylmethyl)oxetane (BPMO), with the use of orange-red and yellow phosphorescent dyes to mimic candlelight. The resultant BPMO-based simple structured candlelight organic LED device permitted a maximum exposure limit of 57,700 s, much longer than did a candle (2750 s) or an incandescent bulb (1100 s) at 100 lx. The resulting device showed a color temperature of 1690 K, which is significantly much lower than that of oil lamps (1800 K), candles (1900 K), or incandescent bulbs (2500 K). The device showed a melatonin suppression sensitivity of 1.33%, upon exposure for 1.5 h at night, which is 66% and 88% less than the candle and incandescent bulb, respectively. Its maximum power efficacy is 23.1 lm/W, current efficacy 22.4 cd/A, and external quantum efficiency 10.2%, all much higher than the CBP-based devices. These results encourage a scalable synthesis of novel host materials to design and manufacture high-efficiency candlelight organic LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号