首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long‐term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long‐term projections of climate‐change effects provide temporal context as a species‐wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas  相似文献   

2.
Abstract: The U.S. Endangered Species Act (ESA) defines an endangered species as one “at risk of extinction throughout all or a significant portion of its range.” The prevailing interpretation of this phrase, which focuses exclusively on the overall viability of listed species without regard to their geographic distribution, has led to development of listing and recovery criteria with fundamental conceptual, legal, and practical shortcomings. The ESA's concept of endangerment is broader than the biological concept of extinction risk in that the “esthetic, ecological, educational, historical, recreational, and scientific” values provided by species are not necessarily furthered by a species mere existence, but rather by a species presence across much of its former range. The concept of “significant portion of range” thus implies an additional geographic component to recovery that may enhance viability, but also offers independent benefits that Congress intended the act to achieve. Although the ESA differs from other major endangered‐species protection laws because it acknowledges the distinct contribution of geography to recovery, it resembles the “representation, resiliency, and redundancy” conservation‐planning framework commonly referenced in recovery plans. To address representation, listing and recovery standards should consider not only what proportion of its former range a species inhabits, but the types of habitats a species occupies and the ecological role it plays there. Recovery planning for formerly widely distributed species (e.g., the gray wolf [Canis lupus]) exemplifies how the geographic component implicit in the ESA's definition of endangerment should be considered in determining recovery goals through identification of ecologically significant types or niche variation within the extent of listed species, subspecies, or “distinct population segments.” By linking listing and recovery standards to niche and ecosystem concepts, the concept of ecologically significant type offers a scientific framework that promotes more coherent dialogue concerning the societal decisions surrounding recovery of endangered species.  相似文献   

3.
Marine hydrokinetic power projects will operate as marine environments change in response to increased atmospheric carbon dioxide concentrations. We considered how tidal power development and stressors resulting from climate change may affect Puget Sound species listed under the U.S. Endangered Species Act (ESA) and their food web. We used risk tables to assess the singular and combined effects of tidal power development and climate change. Tidal power development and climate change posed risks to ESA‐listed species, and risk increased with incorporation of the effects of these stressors on predators and prey of ESA‐listed species. In contrast, results of a model of strikes on ESA‐listed species from turbine blades suggested that few ESA‐listed species are likely to be killed by a commercial‐scale tidal turbine array. We applied scenarios to a food web model of Puget Sound to explore the effects of tidal power and climate change on ESA‐listed species using more quantitative analytical techniques. To simulate development of tidal power, we applied results of the blade strike model. To simulate environmental changes over the next 50 years, we applied scenarios of change in primary production, plankton community structure, dissolved oxygen, ocean acidification, and freshwater flooding events. No effects of tidal power development on ESA‐listed species were detected from the food web model output, but the effects of climate change on them and other members of the food web were large. Our analyses exemplify how natural resource managers might assess environmental effects of marine technologies in ways that explicitly incorporate climate change and consider multiple ESA‐listed species in the context of their ecological community. Estimación de los Efectos de Proyectos de Energía de las Mareas y el Cambio Climático sobre Especies Marinas Amenazadas y en Peligro y su Red Alimentaria  相似文献   

4.
In 2014, the Fish and Wildlife Service (FWS) and National Marine Fisheries Service announced a new policy interpretation for the U.S. Endangered Species Act (ESA). According to the act, a species must be listed as threatened or endangered if it is determined to be threatened or endangered in a significant portion of its range (SPR). The 2014 policy seeks to provide consistency by establishing that a portion of the range should be considered significant if the associated individuals’ “removal would cause the entire species to become endangered or threatened.” We reviewed 20 quantitative techniques used to assess whether a portion of a species’ range is significant according to the new guidance. Our assessments are based on the 3R criteria—redundancy (i.e., buffering from catastrophe), resiliency (i.e., ability to withstand stochasticity), and representation (i.e., ability to evolve)—that the FWS uses to determine if a species merits listing. We identified data needs for each quantitative technique and considered which methods could be implemented given the data limitations typical of rare species. We also identified proxies for the 3Rs that may be used with limited data. To assess potential data availability, we evaluated 7 example species by accessing data in their species status assessments, which document all the information used during a listing decision. In all species, an SPR could be evaluated with at least one metric for each of the 3Rs robustly or with substantial assumptions. Resiliency assessments appeared most constrained by limited data, and many species lacked information on connectivity between subpopulations, genetic variation, and spatial variability in vital rates. These data gaps will likely make SPR assessments for species with complex life histories or that cross national boundaries difficult. Although we reviewed techniques for the ESA, other countries require identification of significant areas and could benefit from this research.  相似文献   

5.
Like many federal statutes, the U.S. Endangered Species Act (ESA) contains vague or ambiguous language. The meaning imparted to the ESA's unclear language can profoundly impact the fates of endangered and threatened species. Hence, conservation scientists should contribute to the interpretation of the ESA when vague or ambiguous language contains scientific words or refers to scientific concepts. Scientists need to know at least these 2 facts about statutory interpretation: statutory interpretation is subjective and the potential influence of normative values results in different expectations for the parties involved. With the possible exception of judges, all conventional participants in statutory interpretation are serving their own interests, advocating for their preferred policies, or biased. Hence, scientists can play a unique role by informing the interpretative process with objective, policy‐neutral information. Conversely, scientists may act as advocates for their preferred interpretation of unclear statutory language. The different roles scientists might play in statutory interpretation raise the issues of advocacy and competency. Advocating for a preferred statutory interpretation is legitimate political behavior by scientists, but statutory interpretation can be strongly influenced by normative values. Therefore, scientists must be careful not to commit stealth policy advocacy. Most conservation scientists lack demonstrable competence in statutory interpretation and therefore should consult or collaborate with lawyers when interpreting statutes. Professional scientific societies are widely perceived by the public as unbiased sources of objective information. Therefore, professional scientific societies should remain policy neutral and present all interpretations of unclear statutory language; explain the semantics and science both supporting and contradicting each interpretation; and describe the potential consequences of implementing each interpretation. A review of scientists’ interpretations of the phrase “significant portion of its range” in the ESA is used to critique the role of scientists and professional societies in statutory interpretation.  相似文献   

6.
The Endangered Species Act (ESA) of the United States was enacted in 1973 to prevent the extinction of species. Recovery plans, required by 1988 amendments to the ESA, play an important role in organizing these efforts to protect and recover species. To improve the use of science in the recovery planning process, the Society for Conservation Biology (SCB) commissioned an independent review of endangered species recovery planning in 1999. From these findings, the SCB made key recommendations for how management agencies could improve the recovery planning process, after which the U.S. Fish and Wildlife Service and the National Marine Fisheries Service redrafted their recovery planning guidelines. One important recommendation called for recovery plans to make threats a primary focus, including organizing and prioritizing recovery tasks for threat abatement. We sought to determine the extent to which results from the SCB study were incorporated into these new guidelines and whether the SCB recommendations regarding threats manifested in recovery plans written under the new guidelines. Recovery planning guidelines generally incorporated the SCB recommendations, including those for managing threats. However, although recent recovery plans have improved in their treatment of threats, many fail to adequately incorporate threat monitoring. This failure suggests that developing clear guidelines for monitoring should be an important priority in improving ESA recovery planning.  相似文献   

7.
Use of population viability analyses (PVAs) in endangered species recovery planning has been met with both support and criticism. Previous reviews promote use of PVA for setting scientifically based, measurable, and objective recovery criteria and recommend improvements to increase the framework's utility. However, others have questioned the value of PVA models for setting recovery criteria and assert that PVAs are more appropriate for understanding relative trade‐offs between alternative management actions. We reviewed 258 final recovery plans for 642 plants listed under the U.S. Endangered Species Act to determine the number of plans that used or recommended PVA in recovery planning. We also reviewed 223 publications that describe plant PVAs to assess how these models were designed and whether those designs reflected previous recommendations for improvement of PVAs. Twenty‐four percent of listed species had recovery plans that used or recommended PVA. In publications, the typical model was a matrix population model parameterized with ≤5 years of demographic data that did not consider stochasticity, genetics, density dependence, seed banks, vegetative reproduction, dormancy, threats, or management strategies. Population growth rates for different populations of the same species or for the same population at different points in time were often statistically different or varied by >10%. Therefore, PVAs parameterized with underlying vital rates that vary to this degree may not accurately predict recovery objectives across a species’ entire distribution or over longer time scales. We assert that PVA, although an important tool as part of an adaptive‐management program, can help to determine quantitative recovery criteria only if more long‐term data sets that capture spatiotemporal variability in vital rates become available. Lacking this, there is a strong need for viable and comprehensive methods for determining quantitative, science‐based recovery criteria for endangered species with minimal data availability. Uso Actual y Potencial del Análisis de Viabilidad Poblacional para la Recuperación de Especies de Plantas Enlistadas en el Acta de Especies En Peligro de E.U.A  相似文献   

8.
Many marine invertebrate species facing potential extinction have uncertain taxonomies and poorly known demographic and ecological traits. Uncertainties are compounded when potential extinction drivers are climate and ocean changes whose effects on even widespread and abundant species are only partially understood. The U.S. Endangered Species Act mandates conservation management decisions founded on the extinction risk to species based on the best available science at the time of consideration—requiring prompt action rather than awaiting better information. We developed an expert‐opinion threat‐based approach that entails a structured voting system to assess extinction risk from climate and ocean changes and other threats to 82 coral species for which population status and threat response information was limited. Such methods are urgently needed because constrained budgets and manpower will continue to hinder the availability of desired data for many potentially vulnerable marine species. Significant species‐specific information gaps and uncertainties precluded quantitative assessments of habitat loss or population declines and necessitated increased reliance on demographic characteristics and threat vulnerabilities at genus or family levels. Adapting some methods (e.g., a structured voting system) used during other assessments and developing some new approaches (e.g., integrated assessment of threats and demographic characteristics), we rated the importance of threats contributing to coral extinction risk and assessed those threats against population status and trend information to evaluate each species’ extinction risk over the 21st century. This qualitative assessment resulted in a ranking with an uncertainty range for each species according to their estimated likelihood of extinction. We offer guidance on approaches for future biological extinction risk assessments, especially in cases of data‐limited species likely to be affected by global‐scale threats. Incorporación del Cambio Climático y Oceánico en Estudios de Riesgo de Extinción para 82 Especies de Coral  相似文献   

9.
Abstract: Species listed under the U.S. Endangered Species Act (i.e., listed species) have declined to the point that the probability of their extinction is high. The decline of these species, however, may manifest itself in different ways, including reductions in geographic range, number of populations, or overall abundance. Understanding the pattern of decline can help managers assess extinction probability and define recovery objectives. Although quantitative data on changes in geographic range, number of populations, and abundance usually do not exist for listed species, more often qualitative data can be obtained. We used qualitative data in recovery plans for federally listed species to determine whether each listed species declined in range size, number of populations, or abundance relative to historical levels. We calculated the proportion of listed species in each state (or equivalent) that declined in each of those ways. Nearly all listed species declined in abundance, and range size or number of populations declined in approximately 80% of species for which those data were available. Patterns of decline, however, differed taxonomically and geographically. Declines in range were more common among vertebrates than plants, whereas population extirpations were more common among plants. Invertebrates had high incidence of range and population declines. Narrowly distributed plants and invertebrates may be subject to acute threats that may result in population extirpations, whereas vertebrates may be affected by chronic threats that reduce the extent and size of populations. Additionally, in the eastern United States and U.S. coastal areas, where the level of land conversion is high, a greater percentage of species’ ranges declined and more populations were extirpated than in other areas. Species in the Southwest, especially plants, had fewer range and population declines than other areas. Such relations may help in the selection of species’ recovery criteria.  相似文献   

10.
In recent decades, there has been an increasing emphasis on proactive efforts to conserve species being considered for listing under the U.S. Endangered Species Act (ESA) before they are listed (i.e., preemptive conservation). These efforts, which depend on voluntary actions by public and private land managers across the species’ range, aim to conserve species while avoiding regulatory costs associated with ESA listing. We collected data for a set of social, economic, environmental, and institutional factors that we hypothesized would influence voluntary decisions to promote or inhibit preemptive conservation of species under consideration for ESA listing. We used logistic regression to estimate the association of these factors with preemptive conservation outcomes based on data for a set of species that entered the ESA listing process and were either officially listed (n = 314) or preemptively conserved (n = 73) from 1996 to 2018. Factors significantly associated with precluded listing due to preemptive conservation included high baseline conservation status, low proportion of private land across the species’ range, small total range size, exposure to specific types of threats, and species’ range extending over several states. These results highlight strategies that can help improve conservation outcomes, such as allocating resources for imperiled species earlier in the listing process, addressing specific threats, and expanding incentives and coordination mechanisms for conservation on private lands.  相似文献   

11.
For species listed under the U.S. Endangered Species Act (ESA), the U.S. Fish and Wildlife Service and National Marine Fisheries Service are tasked with writing recovery plans that include “objective, measurable criteria” that define when a species is no longer at risk of extinction, but neither the act itself nor agency guidelines provide an explicit definition of objective, measurable criteria. Past reviews of recovery plans, including one published in 2012, show that many criteria lack quantitative metrics with clear biological rationale and are not meeting the measureable and objective mandate. I reviewed how objective, measureable criteria have been defined implicitly and explicitly in peer‐reviewed literature, the ESA, other U.S. statutes, and legal decisions. Based on a synthesis of these sources, I propose the following 6 standards be used as minimum requirements for objective, measurable criteria: contain a quantitative threshold with calculable units, stipulate a timeframe over which they must be met, explicitly define the spatial extent or population to which they apply, specify a sampling procedure that includes sample size, specify a statistical significance level, and include justification by providing scientific evidence that the criteria define a species whose extinction risk has been reduced to the desired level. To meet these 6 standards, I suggest that recovery plans be explicitly guided by and organized around a population viability modeling framework even if data or agency resources are too limited to complete a viability model. When data and resources are available, recovery criteria can be developed from the population viability model results, but when data and resources are insufficient for model implementation, extinction risk thresholds can be used as criteria. A recovery‐planning approach centered on viability modeling will also yield appropriately focused data‐acquisition and monitoring plans and will facilitate a seamless transition from recovery planning to delisting. Un Marco de Referencia para Desarrollar Criterios de Recuperación Objetivos y Medibles para Especies Amenazadas y en Peligro  相似文献   

12.
The effects of chronic exposure to increasing levels of human‐induced underwater noise on marine animal populations reliant on sound for communication are poorly understood. We sought to further develop methods of quantifying the effects of communication masking associated with human‐induced sound on contact‐calling North Atlantic right whales (Eubalaena glacialis) in an ecologically relevant area (~10,000 km2) and time period (peak feeding time). We used an array of temporary, bottom‐mounted, autonomous acoustic recorders in the Stellwagen Bank National Marine Sanctuary to monitor ambient noise levels, measure levels of sound associated with vessels, and detect and locate calling whales. We related wind speed, as recorded by regional oceanographic buoys, to ambient noise levels. We used vessel‐tracking data from the Automatic Identification System to quantify acoustic signatures of large commercial vessels. On the basis of these integrated sound fields, median signal excess (the difference between the signal‐to‐noise ratio and the assumed recognition differential) for contact‐calling right whales was negative (?1 dB) under current ambient noise levels and was further reduced (?2 dB) by the addition of noise from ships. Compared with potential communication space available under historically lower noise conditions, calling right whales may have lost, on average, 63–67% of their communication space. One or more of the 89 calling whales in the study area was exposed to noise levels ≥120 dB re 1 μPa by ships for 20% of the month, and a maximum of 11 whales were exposed to noise at or above this level during a single 10‐min period. These results highlight the limitations of exposure‐threshold (i.e., dose‐response) metrics for assessing chronic anthropogenic noise effects on communication opportunities. Our methods can be used to integrate chronic and wide‐ranging noise effects in emerging ocean‐planning forums that seek to improve management of cumulative effects of noise on marine species and their habitats. Cuantificación de la Pérdida de Espacio de Comunicación Acústica para Ballenas Francas Dentro y Alrededor de un Santuario Marino Nacional en E. U. A.  相似文献   

13.
Abstract: Nonmarket valuation research has produced economic value estimates for a variety of threatened, endangered, and rare species around the world. Although over 40 value estimates exist, it is often difficult to compare values from different studies due to variations in study design, implementation, and modeling specifications. We conducted a stated‐preference choice experiment to estimate the value of recovering or downlisting 8 threatened and endangered marine species in the United States: loggerhead sea turtle (Caretta caretta), leatherback sea turtle (Dermochelys coriacea), North Atlantic right whale (Eubalaena glacialis), North Pacific right whale (Eubalaena japonica), upper Willamette River Chinook salmon (Oncorhynchus tshawytscha), Puget Sound Chinook salmon (Oncorhynchus tshawytscha), Hawaiian monk seals (Monachus schauinslandi), and smalltooth sawfish (Pristis pectinata). In May 2009, we surveyed a random sample of U.S. households. We collected data from 8476 households and estimated willingness to pay for recovering and downlisting the 8 species from these data. Respondents were willing to pay for recovering and downlisting threatened and endangered marine taxa. Willingness‐to‐pay values ranged from $40/household for recovering Puget Sound Chinook salmon to $73/household for recovering the North Pacific right whale. Statistical comparisons among willingness‐to‐pay values suggest that some taxa are more economically valuable than others, which suggests that the U.S. public's willingness to pay for recovery may vary by species.  相似文献   

14.
The U.S. Endangered Species Act (ESA) requires that the “best available scientific and commercial data” be used to protect imperiled species from extinction and preserve biodiversity. However, it does not provide specific guidance on how to apply this mandate. Scientific data can be uncertain and controversial, particularly regarding species delineation and hybridization issues. The U.S. Fish and Wildlife Service (FWS) had an evolving hybrid policy to guide protection decisions for individuals of hybrid origin. Currently, this policy is in limbo because it resulted in several controversial conservation decisions in the past. Biologists from FWS must interpret and apply the best available science to their recommendations and likely use considerable discretion in making recommendations for what species to list, how to define those species, and how to recover them. We used semistructured interviews to collect data on FWS biologists’ use of discretion to make recommendations for listed species with hybridization issues. These biologists had a large amount of discretion to determine the best available science and how to interpret it but generally deferred to the scientific consensus on the taxonomic status of an organism. Respondents viewed hybridization primarily as a problem in the context of the ESA, although biologists who had experience with hybridization issues were more likely to describe it in more nuanced terms. Many interviewees expressed a desire to continue the current case‐by‐case approach for handling hybridization issues, but some wanted more guidance on procedures (i.e., a “flexible” hybrid policy). Field‐level information can provide critical insight into which policies are working (or not working) and why. The FWS biologists’ we interviewed had a high level of discretion, which greatly influenced ESA implementation, particularly in the context of hybridization.  相似文献   

15.
Climate change will require species to adapt to new conditions or follow preferred climates to higher latitudes or elevations, but many dispersal‐limited freshwater species may be unable to move due to barriers imposed by watershed boundaries. In addition, invasive nonnative species may expand into new regions under future climate conditions and contribute to the decline of native species. We evaluated future distributions for the threatened European crayfish fauna in response to climate change, watershed boundaries, and the spread of invasive crayfishes, which transmit the crayfish plague, a lethal disease for native European crayfishes. We used climate projections from general circulation models and statistical models based on Mahalanobis distance to predict climate‐suitable regions for native and invasive crayfishes in the middle and at the end of the 21st century. We identified these suitable regions as accessible or inaccessible on the basis of major watershed boundaries and present occurrences and evaluated potential future overlap with 3 invasive North American crayfishes. Climate‐suitable areas decreased for native crayfishes by 19% to 72%, and the majority of future suitable areas for most of these species were inaccessible relative to native and current distributions. Overlap with invasive crayfish plague‐transmitting species was predicted to increase. Some native crayfish species (e.g., noble crayfish [Astacus astacus]) had no future refugia that were unsuitable for the modeled nonnative species. Our results emphasize the importance of preventing additional introductions and spread of invasive crayfishes in Europe to minimize interactions between the multiple stressors of climate change and invasive species, while suggesting candidate regions for the debatable management option of assisted colonization. Efectos del Cambio Climático, Especies Invasoras y Enfermedades sobre la Distribución de Cangrejos de Río Europeos Nativos  相似文献   

16.
Lack of guidance for interpreting the definitions of endangered and threatened in the U.S. Endangered Species Act (ESA) has resulted in case‐by‐case decision making leaving the process vulnerable to being considered arbitrary or capricious. Adopting quantitative decision rules would remedy this but requires the agency to specify the relative urgency concerning extinction events over time, cutoff risk values corresponding to different levels of protection, and the importance given to different types of listing errors. We tested the performance of 3 sets of decision rules that use alternative functions for weighting the relative urgency of future extinction events: a threshold rule set, which uses a decision rule of x% probability of extinction over y years; a concave rule set, where the relative importance of future extinction events declines exponentially over time; and a shoulder rule set that uses a sigmoid shape function, where relative importance declines slowly at first and then more rapidly. We obtained decision cutoffs by interviewing several biologists and then emulated the listing process with simulations that covered a range of extinction risks typical of ESA listing decisions. We evaluated performance of the decision rules under different data quantities and qualities on the basis of the relative importance of misclassification errors. Although there was little difference between the performance of alternative decision rules for correct listings, the distribution of misclassifications differed depending on the function used. Misclassifications for the threshold and concave listing criteria resulted in more overprotection errors, particularly as uncertainty increased, whereas errors for the shoulder listing criteria were more symmetrical. We developed and tested the framework for quantitative decision rules for listing species under the U.S. ESA. If policy values can be agreed on, use of this framework would improve the implementation of the ESA by increasing transparency and consistency. Evaluando Reglas de Decisión para Categorizar el Riesgo de Extinción de Especies con el Fin de Desarrollar de Criterios Cuantitativos de Alistamiento en el Acta de Especies en Peligro de los EE. UU.  相似文献   

17.
Abstract: In a preliminary analysis of listing decisions under Canada's Species at Risk Act (SARA), Mooers et al. (2007) demonstrated an apparent bias against marine and northern species. As a follow‐up, we expanded the set of potential explanatory variables, including information on jurisdictional and administrative elements of the listing process, and considered an additional 16 species recommended for listing by SARA's scientific advisory committee as of 15 August 2006. Logistic model selection based on Akaike differences suggested that species were less likely to be listed if they were harvested or had commercial or subsistence harvesting as an explicitly identified threat; had Department of Fisheries and Oceans (DFO) as a responsible authority (RA); were located in Canada's north generally, and especially in Nunavut; or were found mostly or entirely within Canada. Subsequent model validation with an independent set of 50 species for which a listing decision was handed down in December 2007 showed an overall misclassification rate of <0.10, indicating reasonable predictive power. In light of these results, we recommend that RAs under SARA adopt a two‐track listing approach to address problems of delays arising from extended consultations and the inconsistent use by the RAs of socioeconomic analysis; consider revising SARA so that socioeconomic analysis occurs during decisions about protecting species and their habitats rather than at the listing stage; and maintain an integrated database with information on species’ biology, threats, and agency actions to enable future evaluation of SARA's impact.  相似文献   

18.
Climate change is believed to be causing declines of ectothermic vertebrates, but there is little evidence that climatic conditions associated with declines have exceeded critical (i.e., acutely lethal) maxima or minima, and most relevant studies are correlative, anecdotal, or short‐term (hours). We conducted an 11‐week factorial experiment to examine the effects of temperature (22 °C or 27 °C), moisture (wet or dry), and atrazine (an herbicide; 0, 4, 40, 400 μg/L exposure as embryos and larvae) on the survival, growth, behavior, and foraging rates of postmetamorphic streamside salamanders (Ambystoma barbouri), a species of conservation concern. The tested climatic conditions were between the critical maxima and minima of streamside salamanders; thus, this experiment quantified the long‐term effects of climate change within the noncritical range of this species. Despite a suite of behavioral adaptations to warm and dry conditions (e.g., burrowing, refuge use, huddling with conspecifics, and a reduction in activity), streamside salamanders exhibited significant loss of mass and significant mortality in all but the cool and moist conditions, which were closest to the climatic conditions in which they are most active in nature. A temperature of 27 °C represented a greater mortality risk than dry conditions; death occurred rapidly at this temperature and more gradually under cool and dry conditions. Foraging decreased under dry conditions, which suggests there were opportunity costs to water conservation. Exposure to the herbicide atrazine additively decreased water‐conserving behaviors, foraging efficiency, mass, and time to death. Hence, the hypothesis that moderate climate change can cause population declines is even more plausible under scenarios with multiple stressors. These results suggest that climate change within the noncritical range of species and pollution may reduce individual performance by altering metabolic demands, hydration, and foraging effort and may facilitate population declines of amphibians and perhaps other ectothermic vertebrates. Cambio Climático, Estresantes Múltiples y la Declinación de Ectotermos  相似文献   

19.
Abstract: Conserving rare species and protecting biodiversity and ecosystem functioning depends on sound information on the nature of rarity. Rarity is multidimensional and has a variety of definitions, which presents the need for a quantitative classification scheme with which to categorize species as rare or common. We constructed such a classification for North American freshwater fishes to better describe rarity in fishes and provide researchers and managers with a tool to streamline conservation efforts. We used data on range extents, habitat specificities, and local population sizes of North American freshwater fishes and a variety of quantitative methods and statistical decision criteria, including quantile regression and a cost‐function algorithm to determine thresholds for categorizing a species as rare or common. Species fell into eight groups that conform to an established framework for rarity. Fishes listed by the American Fisheries Society (AFS) as endangered, threatened, or vulnerable were most often rare because their local population sizes were low, ranges were small, and they had specific habitat needs, in that order, whereas unlisted species were most often considered common on the basis of these three factors. Species with large ranges generally had few specific habitat needs, whereas those with small ranges tended to have narrow habitat specificities. We identified 30 species not designated as imperiled by AFS that were rare along all dimensions of rarity and may warrant further study or protection, and we found three designated species that were common along all dimensions and may require a review of their imperilment status. Our approach could be applied to other taxa to aid conservation decisions and serve as a useful tool for future revisions of listings of fish species.  相似文献   

20.
Abstract: Environmental synergisms may pose the greatest threat to tropical biodiversity. Using recently updated data sets from the International Union for Conservation of Nature (IUCN) Red List, we evaluated the incidence of perceived threats to all known mammal, bird, and amphibian species in tropical forests. Vulnerable, endangered, and extinct species were collectively far more likely to be imperiled by combinations of threats than expected by chance. Among 45 possible pairwise combinations of 10 different threats, 69%, 93%, and 71% were significantly more frequent than expected for threatened mammals, birds, and amphibians, respectively, even with a stringent Bonferroni‐corrected probability value (p= 0.003). Based on this analysis, we identified five key environmental synergisms in the tropics and speculate on the existence of others. The most important involve interactions between habitat loss or alteration (from agriculture, urban sprawl, infrastructure, or logging) and other anthropogenic disturbances such as hunting, fire, exotic‐species invasions, or pollution. Climatic change and emerging pathogens also can interact with other threats. We assert that environmental synergisms are more likely the norm than the exception for threatened species and ecosystems, can vary markedly in nature among geographic regions and taxa, and may be exceedingly difficult to predict in terms of their ultimate impacts. The perils posed by environmental synergisms highlight the need for a precautionary approach to tropical biodiversity conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号