首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
刘益标  陈均 《机床与液压》2018,46(15):105-108
当前,机械臂关节运动轨迹容易受到外界环境的干扰,导致运动轨迹不稳定,抖动现象特别严重,不能很好地满足轨迹跟踪任务的要求。对此,文中创建机械臂双关节运动简图模型,采用径向基函数(RBF)神经网络自适应控制方法跟踪机械臂关节的运动轨迹。分析了机械臂运动轨迹所产生的误差,设计了机械臂关节神经网络自适应控制器,引用李雅普诺夫函数对控制器的稳定性和收敛性进行了证明。结合具体实例,借助于Matlab软件对机械臂双关节的运动轨迹追踪误差进行仿真。同时,与模糊PID控制的仿真误差进行对比和分析。仿真曲线显示,机械臂关节采用RBF神经网络自适应控制方法,运动轨迹追踪所产生的误差较小,输入力矩的振动幅度相对较小。因此,机械臂关节末端采用RBF神经网络自适应控制器,可以降低运动轨迹的跟踪误差,改善振动现象。  相似文献   

2.
为了抑制变刚度电液串联弹性机械臂振动幅度,设计反演自适应模糊滑模控制器,并对机械臂输出效果进行仿真。创建新型变刚度电液串联弹性机械臂,给出阀内流体流动分布的非线性控制方程式。针对传统滑模控制器进行改进,将输入整形技术与模糊逻辑系统相结合,设计反演自适应模糊滑模控制器。引用李雅普诺夫函数对控制器的稳定性进行证明,保证系统的状态变量到达并保持在滑动面上。采用MATLAB软件对机械臂角位移、角速度和转矩变化进行仿真,与滑模控制器输出结果进行对比。结果显示:在无干扰环境中,采用滑模控制器和反演自适应模糊滑模控制器,机械臂运动轨迹与期望轨迹的误差较小,振动幅度较小;在有波形干扰环境中,反演自适应模糊滑模控制器控制效果明显优于滑模控制器,机械臂运动轨迹与期望轨迹的误差较小,振动幅度较小,自适应调节时间较短,无超调量发生。采用反演自适应模糊滑模控制器,能够抑制变刚度电液串联弹性机械臂振动幅度,减小其输出误差。  相似文献   

3.
为提高双臂机器人运动的协调性,设计了协调控制系统,并对机械臂运动轨迹跟踪误差和角速度变化进行仿真验证。创建了双臂机器人三维模型,利用相对雅克比矩阵推导机械臂末端执行器运动轨迹误差公式,设计机械臂运动协调控制器。根据层次优先的任务结构推导机械臂关节角速度方程式,设计双臂联合避免关节限制策略,通过优先级协调双臂运动。为验证关节约束条件下机械臂运动的协调性和稳定性,采用MATLAB软件对机械臂运动轨迹跟踪误差和角速度变化进行仿真,并与无关节约束条件下输出效果进行比较。结果表明:在无关节约束条件下,单臂机器人运动轨迹误差较小,但是双臂机器人运动轨迹跟踪误差较大,双臂产生的角速度峰值较大;在有关节约束条件下,单臂机器人运动轨迹误差较大,而双臂运动轨迹跟踪误差较小,双臂产生的角速度峰值较小。采用联合关节限制策略,可以提高机械臂运动的协调性,降低机械臂角速度产生的峰值,机器人运动相对稳定,效果较好。  相似文献   

4.
为了提高双臂机器人运动轨迹追踪精度,降低运动过程中的抖动幅度,引入混合粒子群算法优化双臂机器人模糊逻辑控制,并对误差和力矩进行仿真。创建双臂机器人平面运动模型简图,建立机械臂运动方程式。分析了模糊逻辑控制规则,引用模糊逻辑控制不同成本函数定义机械臂运动轨迹的平方误差均值、误差的绝对值及控制力参考误差,采用遗传算法耦合粒子群算法优化模糊逻辑控制的成本函数。通过MATLAB对优化模糊逻辑控制的双臂机器人运动轨迹控制力矩进行仿真,并且与模糊逻辑控制仿真结果形成对比。仿真结果显示:受外界环境干扰时,双臂机器人模糊逻辑控制采用遗传算法耦合粒子群算法优化后,不仅运动轨迹追踪误差较小,而且输入力矩值也较小。双臂机器人模糊逻辑控制采用遗传算法耦合粒子群算法优化后,能够提高机器人运动轨迹追踪精度和降低控制系统抖动幅度。  相似文献   

5.
赵龙  田祥 《机床与液压》2019,47(23):94-97
针对移动机器人追踪误差较大、输入扭矩较大的问题,设计了黎卡提微分控制器,并对控制效果进行仿真验证。创建了轮式移动协同机器人,推导机器人运动动力学方程式,引用黎卡提微分方程式,设计出状态依赖性的黎卡提微分控制器。在非完整约束下,推导出机器人状态相关系数参数化和控制结构,实现了黎卡提微分控制器下的移动机械臂运动的稳定性。采用MATLAB软件对移动机器人运动输出误差和输入转矩进行仿真,结果显示:该方法解决了机器人非完整约束系统的不稳定性问题,其输出最大误差下降了42.4%,输入转矩响应时间缩短了50%。采用黎卡提微分控制器,能够提高机器人追踪输出精度和运动稳定性。研究结果为深入研究机器人控制方法提供了理论依据。  相似文献   

6.
为了提高不确定机械臂系统在扰动工况下的轨迹跟踪精度,设计了论域自适应变化的模糊补偿控制器。以二自由度机械臂为研究对象,建立了机械臂系统的动力学模型,设计了模糊补偿控制器的整体方案。提出了模糊控制参数论域随跟踪误差自适应变化的思想:当跟踪误差较小时,参数论域随之减小,有利于提高控制精度;当跟踪误差较大时,参数论域随之增大,有利于控制过程收敛;基于Lyapunov稳定性分析,给出了补偿力矩系数的自适应变化律。经仿真验证,论域自适应模糊补偿控制器对期望轨迹跟踪误差的最大值和方均根均远小于传统模糊补偿控制。仿真结果表明在扰动工况下,论域自适应模糊控制器对不确定机械臂的轨迹跟踪控制是有效的,且在控制精度和速度方面具有一定优越性。  相似文献   

7.
吕国策 《机床与液压》2019,47(19):158-163
液压执行器运动轨迹容易受到多种环境因素干扰,导致实际运动轨迹偏离理论运动轨迹,造成定位精度下降。对此,建立了单杆液压执行器模型简图,采用李雅普诺夫稳定控制器控制液压执行器的运动轨迹。分析了双侧遥控操作系统的动态模型,推导了液压执行器流量非线性控制方程式,设计了单杆液压致动器双侧控制的李雅普诺夫稳定控制方案,采用数学方法对控制器的稳定性进行了证明。结合具体实例,对单杆液压执行器的运动轨迹跟踪误差进行仿真,并与传统PID控制器的跟踪误差形成对比。对误差的仿真结果表明:在受到外界波形干扰时,采用李雅普诺夫稳定控制器控制液压执行器运动轨迹,产生误差较小。液压执行器采用李雅普诺夫稳定控制器,能够提高系统运动的稳定性,降低运动轨迹产生的误差。  相似文献   

8.
以仿人型机械臂为研究对象,针对常规PID控制器在机械臂轨迹跟踪控制中存在速度较缓慢、位姿误差较大的问题,设计了一种自适应鲁棒控制策略。利用SolidWorks进行机械臂结构的自主设计,根据所设计的机械臂参数进行控制器设计,利用Simulink建立机械臂控制系统模型,在直线和曲线两种运动目标轨迹下进行轨迹跟踪控制验证。实验结果表明,相对于常规控制器该自适应鲁棒控制方法可以更为准确地控制机械臂的末端轨迹,跟踪速度快且跟踪位姿准确,具有较好的可行性及可移植性。  相似文献   

9.
为了降低机械臂运动轨迹偏差、提高精确度,设计了六自由度机械臂模型并对末端执行器进行运动轨迹规划。从运动学出发建立机械臂的连杆坐标系并获得D-H参数,通过机械臂运动学公式求解得末端执行器位置和姿态;借助MATLAB中的神经网络工具箱设计RBF神经网络,利用轨迹离散转化得到的离散点训练RBF神经网络。仿真结果表明,采用RBF神经网络优划后得到的运动轨迹为平滑曲线、且在各坐标轴的趋近误差均低于±0.4 mm,降低了趋近误差,实现了机械臂在笛卡尔空间的轨迹优划。实验结果达到了预期效果,表明此次轨迹优化的合理性。对机械臂应用于生产中具有一定的指导意义。  相似文献   

10.
各轴上的关节非线性和不同轴间的动力学耦合效应是导致多轴工业机器人轨迹跟踪误差的主要非线性因素。因此,提出一种考虑关节非线性的串联双连杆机械臂模型的工业机器人运动控制方法。通过构造机械臂运动学和动力学模型,将连杆的非线性刚度和摩擦力直接辨识为关节非线性,从而进行参数化建模,通过实验验证了模型的有效性;提出了辨识双连杆动态模型的二自由度控制方案及带可变陷波滤波器的反馈整型控制方案,对机械臂运动进行控制。实验结果表明:与常规PI轨迹跟踪控制方法相比,此控制方案缩短了调整时间且减小了最大路径误差,降低了超调量。研究表明该控制方案能够有效地抑制残余振动,提高机械臂运动稳定性和轨迹追踪精度。  相似文献   

11.
李爱民 《机床与液压》2017,45(21):21-25
针对单杆柔性机械臂末端轨迹跟踪和弹性振动抑制的问题,提出了一种基于奇异摄动法的复合控制方法。采用假设模态法和Lagrange方程推导出柔性臂的动力学模型。基于奇异摄动法将柔性臂的刚柔耦合动力学方程分解成慢变(刚性)和快变(弹性)两个子系统。慢变子系统控制器选择滑模控制和PID控制相结合的方法以抑制控制输入引起的抖振,快变子系统则选择LQR最优控制方法以实现简单的线性状态反馈控制律。数值仿真表明:该方法不仅能实现柔性臂的轨迹跟踪,而且有效地抑制了柔性臂运动过程中的弹性振动。并且,采用滑模控制和PID控制相结合的方法设计的慢变子系统控制,能减少普通滑模控制中的输入抖振,具有更好的控制效果。  相似文献   

12.
卢振生  马薇 《机床与液压》2020,48(13):147-151
针对冗余机械臂关节位置约束问题,设计了冗余机械臂关节位置控制策略,在不同条件下对机械臂运动效果进行仿真验证。建立冗余机械臂简图模型,通过雅可比矩阵推导机械臂运动方程式。分析机械臂优先级任务体系构造,比较冗余机械臂在不同优先级条件下的极限状态,引入了机械臂监控系统。设置机械臂仿真环境,采用MATLAB软件对机械臂运动进行仿真。结果表明:机械臂2个关节都违背了极限限制;监控系统在保证关节位置规避限制的同时,会导致路径跟踪误差较大。但是,路径跟随误差不会影响所需的相对末端效应器运动,能够保持末端执行器的相对运动,保证抓取对象的稳定性;证明了冗余机械臂控制器的有效性。采用该策略避免了运动过程中的机械臂关节的限制,能够实现机械臂抓取物体的路径跟踪功能。  相似文献   

13.
在串联机械手运动控制中常采用PID控制器,存在超调较大、跟踪精度低的问题,为此设计了一种基于微粒群(PSO)算法的模糊PID控制器。首先,根据两力臂串联机械手模型,推算出动力学方程式和传递函数;然后,设计控制器的系统结构,采用PSO算法优化模糊PID控制参数,提高了系统的自适应能力和跟踪精度;最后,在MATLAB中对机械手位置跟踪控制进行仿真。仿真结果显示:PID控制超调较大,有震荡;经模糊调整后,超调变小,稳定性较好;再通过PSO优化,响应速度变快,超调量基本消除。  相似文献   

14.
为减小机械臂末端在进行轨迹跟踪运动时的轮廓误差,提出一种机械臂轮廓误差同步预测控制策略。该策略将操作空间轮廓误差映射到关节空间,从而定义机械臂各关节的同步行为,有效减小了末端轮廓误差,提高了机械臂各关节的运动协调性。为解决常规预测控制器不能保证系统稳定的问题,提出双模同步预测控制方法,通过在预测时域外切换到局部控制率来保证控制器的稳定性。实验结果表明:所设计的控制器能有效减小末端轮廓误差并使关节输出力矩更加平稳。  相似文献   

15.
针对四旋翼飞行器轨迹跟踪控制性能易受模型参数不确定性和未知外部干扰影响的问题,提出一种基于自适应反步法的全局鲁棒控制策略。该方法利用单一虚拟变量表达的线性化参数模型描述系统内部不确定性和外部干扰组成的集总干扰,并通过反步法设计的自适应算法在线估计虚拟变量,从而降低计算量,提高控制器的实时性。基于Lyapunov理论证明了该方法对集总干扰的鲁棒性及系统全部变量的全局一致最终有界性。最后,通过仿真算例验证了该控制策略的有效性和可行性,结果表明:该控制策略能有效克服集总干扰影响,实现四旋翼飞行器的精确轨迹跟踪。  相似文献   

16.
针对矿用液压支架油缸内壁局部缺陷修复,设计一种能深入液压支架油缸筒内进行内壁修复的焊接机械臂。基于改进D-H参数建模方法,对设计的内表面修复焊接机械臂进行运动学建模,并求解了内表面修复焊接机械臂的正、逆运动学。借助MATLAB软件,采用蒙特卡洛法,对该焊接机械臂的有效工作空间进行了仿真分析,利用Robotics Toolbox工具箱对油缸内壁缺陷修复机械臂进行关节轨迹规划,通过仿真得到各关节的角位移、角速度、角加速度曲线。仿真结果表明:该机械臂运行平稳,轨迹连续,满足运动学要求。  相似文献   

17.
万军  贾宇明 《机床与液压》2021,49(17):54-58
针对移动机器人运动轨迹容易受到不确定外界因素干扰的问题,采用逆神经网络模型设计移动机器人控制系统。分别采用逆神经网络控制器和传统PI控制器模型对两轮差动移动机器人运动速度和角速度进行跟踪控制。传统PI控制器模型使用了近似于线性的等效负载驱动器,而逆神经网络控制器使用前馈多层感知神经网络模型,该模型结合了其运动学和动力学的数学模型,在特定工作区域内,对逆神经网络模型进行离散训练。在平面内,对移动机器人的速度跟踪控制进行仿真。结果表明:采用PI控制器模型,移动机器人车轮运动速度和角速度与理论值存在较大误差,而采用逆神经网络模型时误差较小。采用逆神经网络模型设计移动机器人速度控制回路,可以提高移动机器人运动性能,更好地适应外界环境的变化。  相似文献   

18.
针对现有机械臂轨迹控制补偿算法偏差大、效率低的不足,提出一种基于RBF-BP的机械臂行进轨迹控制与跟踪算法研究。从机械臂各轴向的空间移动、角度旋转等6个自由度出发建模,描述机械臂末端的位置移动和姿态变化,并计算向量的移动距离和偏转角度;面对机械臂系统误差和摩擦扰动导致的轨迹偏差问题,利用RBF-BP算法局部逼近最优控制轨迹,并基于高斯基函数的向量值获取最优的权值和轨迹输出值。仿真结果表明:在提出算法控制下的行进轨迹接近于理论轨迹,3个轴向的坐标误差趋近于零。  相似文献   

19.
针对工件在实际加工中打磨空间局限、精度不高等问题,为提高机器人作业的轨迹跟踪效果,提出一种双臂机器人轨迹跟踪控制方法。以轮毂打磨为研究背景,主从架构中夹持机器人采用PD控制,夹持待打磨工件进行位置跟踪运动控制;打磨机器人采用基于位置的阻抗控制,实现力控和末端位置补偿,提高定位精度。基于MATLAB/Simulink设计仿真模型验证可行性,并完成实验验证。实验结果表明:当机器人末端在外界干扰力作用下,能自适应地跟踪及修正轨迹,满足双臂机器人轨迹跟踪控制的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号