首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optic tectum is a major subdivision of the visual system in reptiles. Previous studies have characterized the laminar pattern, the neuronal populations, and the afferent and efferent connections of the optic tectum in a variety of reptiles. However, little is known about the interactions that occur between neurons within the tectum. This study describes two kinds of interactions that occur between one major class of neurons, the radial cells, in the optic tectum of Pseudemys using Nissl, Golgi and electron microscopic preparations. Radial cells have somata which bear long, radially oriented apical dendrites from their upper poles and short, basal dendrites from their lower poles. They are divided into two populations on the basis of the distribution of their somata in the tectum. Deep radial cells have somata densely packed in the stratum griseum periventriculare. Their plasma membranes form casual appositions. Middle radial cells have somata scattered throughout the stratum griseum centrale and stratum fibrosum et griseum superficiale and do not contact each other. The apical dendrites of both populations of radial cells participate in vertically oriented, dendritic bundles. The plasma membranes of the dendrites in these bundles form casual appositions in the deeper tectal layers and chemical, dendrodenritic synapses within the stratum fibrosum et griseum superficiale. The synapses have clear, round synaptic vesicles and slightly asymmetric membrane densities. Thus, radial cells interact via both casual appositions and chemical synapses. These interactions suggest that radial cells may form a basic framework in the tectum. Because both populations of radial cells extend into the stratum fibrosum et griseum superficiale and stratum opticum, they may receive input from some of the same tectal afferent systems. Because the deep radial cells alone have somata and dendrites in the deep tectal layers, they may receive additional inputs that the middle radial cells do not. Neurons in the two populations interact via chemical dendrodentritic synapses, thereby forming vertically oriented modules in the tectum.  相似文献   

2.
Summary Using the ABC immunohistochemical method, we investigated the distribution of calbindinlike immunoreactive structures in the optic tectum of normal fish, Tinca tinca, and from normal and unilaterally eye-enucleated fish, Cyprinus carpio. In nonoperated individuals of both species the optic tectum contained numerous immunoreactive neurons with strongly positive somata located in the stratum periventriculare and a thick immunolabeled dendritic shaft ascending radially toward the stratum fibrosum et griseum superficiale. The retinorecipient layers contained many fibrous immunoreactive structures. Some varicose fibers, isolated or in small bundles, were localized to the stratum album centrale, especially in the dorsal tectal half. Unilateral eye removal produced the disappearance of the immunoreactive fibrous structures located in the retinorecipient layers of the tectum contralateral to the enucleation. The present work shows that calbindinlike immunoreactive substances are localized in specific neural circuits of the fish optic tectum and suggests that the calbindin-like immunoreactive fibers in the retinorecipient strata are of retinal origin.  相似文献   

3.
Summary The retinal efferents of the catfish, Mystus vittatus, were investigated with the use of the horseradish peroxidase (HRP) technique. Most retinal fibres extended contralateral to the eye that had received HRP label, while a few fascicles projected to the ipsilateral side without decussation in the optic chiasma. The contralateral fibres projected to the suprachiasmatic nucleus, the nucleus opticus dorsolateralis, the nucleus of the posterior commissure, the nucleus geniculatus lateralis, pretectal nuclear complex, and to two layers of the optic tectum, i.e., stratum fibrosum et griseum superficiale and stratum griseum centrale. The accessory optic tract arose from the inner area of the optic tract and extended ventromedially to the accessory optic nucleus. The ipsilateral fascicles projected to almost all the above mentioned nuclei, but these projections were comparatively sparse. The ipsilateral retinal projection was restricted to the rostral tectum.  相似文献   

4.
Summary The retinal projections inEsox niger, as determined with the aid of a modified cobalt-lysine method, are considerably more extensive in the diencephalon and pretectum than in other teleost fishes so far examined. Although most retinal axons terminate contralaterally, rare fibers can be traced to the same aggregates ipsilaterally. The retinohypothalamic projection appears larger than hitherto reported in teleosts, and the dorsomedial optic tract issues fibers to a series of cell clusters extending from the rostral thalamus to mid-torus levels. A retinal projection to a presumed ventrolateral optic nucleus (VLO) is described for the first time in a teleost. Other targets of retinal fibers include the nucleus geniculatus lateralis ipse of Meader (GLI), the pretectal nucleus (P), the cortical nucleus and a well-developed ventromedial optic nucleus (VMO). The projection to the optic tectum is principally to the stratum fibrosum et griseum superficiale (SFGS) and stratum marginale (SM), but a considerable number of axons also course through the stratum album centrale (SAC) before terminating there or piercing the stratum griseum centrale (SGC) and terminating in SFGS. Rare terminal arborizations of retinal fibers were also observed in stratum griseum centrale (SGS) and in the stratum griseum periventriculare (SGC) in restricted portions of the tectum. Because of the relatively large size of the visual structures inE. niger it is a potentially useful model for future experimental studies on the visual system.  相似文献   

5.
The expression patterns of three microtubule-associated proteins (MAP1A, MAP1B, and MAP2A&B) were investigated in the developing optic tectum. Expression of MAP1B and middle-molecular-weight peptide of neurofilament (NF-M) was first observed in the same mesencephalic cells on day 3 of incubation, indicating that neuroblasts had been produced. At day 5, MAP1A and MAP2A&B expression appeared in the cellular layer containing the first neuroblasts that differentiate into large multipolar cells. The NF-M+ neurites in the striatum album centrale (SAC) and the striatum opticum (SO) were MAP1B+ up to day 19, but the intensity of MAP1B immunoreactivity decreased with development. All three MAPs were expressed in large multipolar neurons in the developing stratum griseum centrale from the beginning of maturation. Stratum griseum et fibrosum centrale cellular layers, containing radially arranged piriform neurons, were MAP1A/MAP2A&B on day 11 but became MAP1A+/MAP2A&B+ during later stages. These results suggest that the timing of MAP expression in neuronal maturation of large multipolar cells differs from that of piriform cells. The expression of MAPs has revealed specific cellular events in the developing optic tectum. Based on our observations, the development of the optic tectum can be divided into four periods.  相似文献   

6.
Glutamate was coupled via glutaraldehyde to bovine serum albumin. The conjugate was used for raising specific anti-glutamate antibodies. The purified antibody was used for immunostaining of chick cerebellum and optic tectum. Staining was intense in the molecular layer and in cell bodies of the granule cell layer. In the optic tectum a diffuse staining was detected in the superficial layers of stratum griseum fibrosum superficiale and in cell bodies especially in the layers a and e. Large cell bodies located in the stratum griseum centrale were also stained.  相似文献   

7.
Zusammenfassung Der Verlauf der Sehbahn und die Lokalisation der optischen Zentren wurden bei Zonotrichia leucophrys gambelii (nordamerikanischer Ammernfink) nach einseitiger Augenexstirpation mit den Techniken von Nauta-Fink-Heimer, Bodian und Bielschowsky erforscht. Die Untersuchungen erstreckten sich über einen Zeitraum von 3 bis zu 120 Tagen nach der Operation. Zonotrichia leucophrys gambelii besitzt ein für Vögel typisches visuelles System. Die Hauptmasse der Optikusfasern endet im Stratum griseum et fibrosum superficiale des Tectum opticum. Weitere zentrale Endgebiete sind: Nucleus geniculatus lateralis, Nucleus lateralis anterior, Nucleus superficialis synencephali, Nucleus externus, tectales Grau und Nucleus ectomamillaris als Kern der basalen optischen Wurzel. Alle Fasern werden im Chiasma opticum total gekreuzt, auch der Tractus isthmo-opticus, ein efferentes Bündel, dessen Ursprung im Nucleus isthmo-opticus zu finden ist. Dieses efferente Fasersystem läßt sich im Stumpf des durchtrennten N. opticus noch 120 Tage nach der Operation gut versilbern. Eine direkte Verbindung von Retina und Hypothalamus war lichtmikroskopisch nicht nachweisbar. Neurosekretorisch aktive Zellen des Hypothalamus können zwar einen engen räumlichen Kontakt mit den optischen Fasern haben, Synapsen sind aber an diesen Stellen nicht zu erkennen. Es werden passagere Opticusfasern beschrieben, die auf dem Weg zum Nucleus lateralis anterior und Nucleus superficialis synencephali den Hypothalamus durchsetzen.
Neurohistological and experimental studies of the visual system in Zonotrichia leucophrys gambelii
Summary The course of the optic pathways and the positions of the optic centers have been investigated with unilaterally enucleated white-crowned sparrows, Zonotrichia leucophrys gambelii, using the techniques of Nauta-Fink-Heimer, Bodian, and Bielachowsky. The investigation involved birds examined 3–120 days after enucleation. The white-crowned sparrow has a typically avian visual system. The major bundles of optic fibers terminate in the stratum griseum et fibrosum superficiale of the tectum opticum. Further terminal areas are the nucleus geniculatus lateralis, nucleus lateralis anterior, nucleus superficialis synencephali, nucleus externus, the tectal gray, and the nucleus ectomamillaris of the basal optic root. There is a complete crossing of all fibers in the chiasma, including those of the tractus isthmo-opticus, an efferent bundle with its origin in the nucleus isthmo-opticus. This efferent fiber system can be well impregnated in the stump of the sectioned optic nerve up to 120 days after the operation. No direct connection between the retina and hypothalamus could be demonstrated by light microscopy. Hypothalamic neurosecretory cells can occur in close contact with optic fibers but no synapses have been recognized. Some optic fibers pass through the hypothalamus enroute to the nucleus lateralis anterior and the nucleus superficialis synencephali.
Mit Unterstützung durch die Deutsche Forschungsgemeinschaft. Herrn Prof. Dr. D.S. Farner, Department of Zoology, University of Washington, Seattle, Wash., danke ich für die Förderung dieser Studien (National Institutes of Health Research Grant No. 5 ROI NB 06187 to Professor D. S. Farner).  相似文献   

8.
Summary Single unit electrical activity was recorded extracellularly in the nucleus of the basal optic root (nBOR) and in the optic tectum under earth-strength magnetic stimulation. Units in the nBOR which were stimulated while the eyes were illuminated by light of different wavelengths exhibited peaks of magnetic responsiveness at 503 nm and 582 nm.Magnetically directional selective cells were found in the stratum griseum et fibrosum superficiale of the optic tectum. They also showed directional selectivity to dynamic photic stimuli. Response peaks varied with the orientation of the pigeon in the horizontal plane. This confirmed that the magnetic responses contained directional information. The results suggest that the receptor and neural organisation of the pigeon's visual system provides an adequate substrate for the detection and elaboration of magnetic compass information.  相似文献   

9.
墨龙与红鲫的视网膜和视盖解剖结构比较   总被引:1,自引:0,他引:1  
墨龙是一种由红鲫进化来的龙睛种金鱼(Carassius auratus)。随机取体长10—12 cm, 重约35 g的墨龙和红鲫各4尾, 解剖取出整个眼球及脑, 并常规石蜡切片, HE染色。在光学显微镜下观察墨龙和红鲫的视网膜、视盖系统的显微结构变化并比较各层厚度, 发现与红鲫相比, 墨龙视网膜的总厚度下降29.9%, 其中外网状层厚度增加2.5%、内网状层厚度增加11.8%; 而内核层厚度下降21.6%、外核层厚度降低35.6%, 神经节细胞层、杆锥层也变薄, 且后两者分层不规则; 墨龙视盖壁整体厚度增加28.9%, 其中除围脑室层厚度减少22.6%外, 中央纤维层厚度增加12.8%, 中央细胞层厚度增加30.6%, 表面纤维层厚度增加21.9%, 且纤维远较红鲫密集, 视神经层厚度增加91.7%, 边缘层厚度增加35.6%。结果表明长期的人工选择不但改变了墨龙的外形, 而且使其中枢神经组织结构也发生了较大变化, 并推测墨龙的眼球直径及视网膜面积较大, 从而导致自视网膜传入视盖的纤维增多, 是视网膜和视盖中的传递神经冲动的神经元、神经纤维所在层段增厚的主要原因; 同时墨龙视网膜中色素上皮层向杆锥层交错对插, 富含神经元的视网膜外核层、内核层以及视盖中的围脑室层厚度也降低, 可以减少因视网膜面积大而造成的强光伤害; 此外由于墨龙的围脑室层厚度降低, 导致其游动及平衡能力较红鲫差。  相似文献   

10.
In this study, tangential migration and neuronal connectivity organization were analysed in the optic tectum of seven different teleosts through the expression of polysialylated neural cell adhesion molecule (PSA‐NCAM) in response to ecological niche and use of vision. Reduced PSA‐NCAM expression in rainbow trout Oncorhynchus mykiss optic tectum occurred in efferent layers, while in pike Esox lucius and zebrafish Danio rerio it occurred in afferent and efferent layers. Zander Sander lucioperca and European eel Anguilla anguilla had very low PSA‐NCAM expression in all tectal layers except in the stratum marginale. Common carp Cyprinus carpio and wels catfish Silurus glanis had the same intensity of PSA‐NCAM expression in all tectal layers. The optic tectum of all studied fishes was also a site of tangential migration with sustained PSA‐NCAM and c‐series ganglioside expression. Anti‐c‐series ganglioside immunoreactivity was observed in all tectal layers of all analysed fishes, even in layers where PSA‐NCAM expression was reduced. Since the optic tectum is indispensable for visually guided prey capture, stabilization of synaptic contact and decrease of neurogenesis and tangential migration in the visual map are an expected adjustment to ecological niche. The authors hypothesize that this stabilization would probably be achieved by down‐regulation of PSA‐NCAM rather than c‐series of ganglioside.  相似文献   

11.
The optic tectum in birds receives visual information from the contralateral retina. This information is passed through to other brain areas via the deep layers of the optic tectum. In the present study the crossed tectobulbar pathway is described in detail. This pathway forms the connection between the optic tectum and the premotor area of craniocervical muscles in the contralateral paramedian reticular formation. It originates predominantly from neurons in the ventromedial part of stratum griseum centrale and to a lesser extent from stratum album centrale. The fibers leave the tectum as a horizontal fiber bundle, and cross the midline through the caudal radix oculomotorius and rostral nucleus oculomotorius. On the contralateral side fibers turn to ventral and descend caudally in the contralateral paramedian reticular formation to the level of the obex. Labeled terminals are found in the ipsilateral medial mesencephalic reticular formation lateral to the radix and motor nucleus of the oculomotor nerve, and in the contralateral paramedian reticular formation, along the descending tract. Neurons in the medial mesencephalic reticular formation in turn project to the paramedian reticular formation. Through the crossed tectobulbar pathway visual information can influence the activity of craniocervical muscles via reticular premotor neurons.  相似文献   

12.
The electrophysiological and morphological features of visually driven neurons of the stratum griseum centrale of the zebra finch optic tectum were studied by extracellular recording and staining techniques. Stratum griseum centrale neuron responses are sustained in most cases. Receptive fields are big, up to 150 degrees of the visual field. The excitatory center (hot spot) varies in size from 1 degrees to 15 degrees. It can be mapped by small static stimuli, adapts slower than the surround, and has a shape comparable to the excitatory fields of upper-layer neurons. In contrast, the big surround shows responses only to small moving objects which elicit a typical pattern of alternating bursts and silent periods. Alternatively, the same stimuli elicit long-lasting bursts followed by strong adaption. Anatomically, stratum griseum centrale neurons are characterized by far reaching dendrites which terminate with "bottlebrush"-like endings in the upper retinorecipient layers. In addition, they are connected with retinorecipient structures by an interneuron located between layers 10 and 11. The role of the structure of inputs for the organization of the receptive fields is discussed.  相似文献   

13.
Summary Immunocytochemistry using antibodies against Met-enkephalin and Leu-enkephalin has demonstrated a group of large enkephalin-immunoreactive neurons in the nucleus of the rostral mesencephalic tegmentum (mRMT) of two teleost fish, Salmo gairdneri and Salmo salar. Injections of cobalt-lysine in the medial optic tectum retrogradely labeled the above group of tegmental neurons. Tegmental neurons were labeled only ipsilaterally to the injection site. This indicates that enkephalinergic neurons in the nRMT project to the optic tectum, and that at least some of the enkephalinergic axons observed in the optic tectum belong to a tegmento-tectal pathway. Comparable enkephalinergic pathways have been described in reptiles and birds, where pretectal-mesencephalic nuclei contribute to the enkephalin-containing fibers that project to the optic tectum.  相似文献   

14.
An evoked potential consisting of four postsynaptic components was recorded in the guinea-pig superior colliculus following electrical stimulation of the contralateral optic nerve. This potential was generated in response to the activation of four populations of optic nerve fibres with different conduction velocities. Current source-density analysis revealed that the two slower conducting fibre populations synapse in the upper third of the stratum griseum superficiale on dendrites whose cell bodies appear to be found in the lower part of this layer and in the stratum opticum. The two faster conducting populations synapse deeper, near the border of the stratum griseum superficiale and stratum opticum, on neurons with cell bodies that may lie towards the upper part of the stratum griseum superficiale. The locations of these postsynaptic sites correspond to the layers in which the optic nerve terminates as revealed by neuroanatomical tracing techniques. Furthermore, neurons of the shape and orientation predicted by the current source-density analysis were found in the superficial layers by using the Golgi-Cox technique.  相似文献   

15.
The distribution of VIP-like perikarya and fibers was determined throughout the chick brain. The most rostral immunoreactive perikarya were found to be cerebrospinal fluid-contacting neurons in the pars medialis of the lateral septal organ. Additional data were presented supporting the idea that the lateral septal organ is another circumventricular organ within the brain of birds (Kuenzel and van Tienhoven 1982). A large group of immunoreactive perikarya was found in the lateral hypothalamic area and appeared continuous with immunoreactive neurons in the anterior medial and ventromedial hypothalamic nuclei (n). A few perikarya were located in the paraventricular hypothalamic n. A number of immunoreactive neurons were found within and about the infundibular and inferior hypothalamic n., none however was immunoreactive cerebrospinal fluid-contacting neurons. Immunoreactive perikarya were found predominantly in laminae 10–11 of the stratum griseum et fibrosum superficiale. A few scattered perikarya were found ventromedial to the n. tegmenti pedunculo-pontinus pars compacta and locus ceruleus. Some of the immunoreactivity was unusual, being very homogeneous within the cell body with little evidence of the material in the axon or dendrites. Perikarya were found in the central gray, n. intercollicularis, and area ventralis of Tsai. The most caudal structure showing immunoreactive neurons was the n. reticularis paragigantocellularis lateralis. Brain areas containing the most abundant immunoreactive fibers, listed from the rostral-most location, were found in the ventromedial region of the lobus parolfactorius and the lateral septal n. Continuing caudally, there were immunoreactive fibers within the periventricular hypothalamic n.; some of the fibers were found to travel for some distance parallel to the third ventricle. Dense immunoreactive fibers were found in the tractus cortico-habenularis et cortico-septalis, medial habenular n. and posterior and dorsal n. of the archistriatum. A number of areas had what appeared to be baskets of immunoreactive fibers (perhaps immunoreactive terminals) surrounding non-reactive perikarya. Brain areas containing terminals included the piriform cortex, area ventralis of Tsai, interpeduncular n., and specific regions of the stratum griseum et fibrosum superficiale. A very dense immunoreactivity occurred within the external zone of the median eminence, the dorsolateral parabrachial n., and n. tractus solitarii. Vasoactive intestinal polypeptide appears to be a useful peptide for defining the neuroanatomical constituents of the visceral forebrain in birds.  相似文献   

16.
Summary The distribution of -aminobutyric acid (GABA) immunoreactivity was studied in the brain of two amphibian species (Triturus cristatus carnifex, Urodela; Rana esculenta, Anura) by employing a specific GABA antiserum. A noteworthy immunoreactive neuronal system was found in the telencephalic dorsal and medial pallium (primordium pallii dorsalis and primordium hippocampi) and in the olfactory bulbs. In the diencephalic habenular nuclei there was a rich GABAergic innervation, and immunoreactive neurons were observed in the dorsal thalamus. In the hypothalamus the GABA immunoreactivity was found in the preoptic area, the paraventricular organ and in the hypothalamo-hypophysial complex. In the preoptic area of the frog some GABA-immunoreactive CSF-contacting cells were shown. In the optic tectum immunolabeled neurons were present in all the cellular layers. A rich GABAergic innervation characterized both the fibrous layers of the tectum and the neuropil of the tegmentum and interpeduncular nucleus. In the cerebellum, in addition to the Purkinje cells showing a variable immunopositivity, some immunoreactive cell bodies appeared in the central grey. Abundant immunolabeled nerve fibers in the acoustico-lateral area and some immunopositive neurons in the region of the raphe nucleus were observed. In conclusion, the GABAergic central systems, well-developed in the amphibian species studied, were generally characterized by close similarities to the pattern described in mammals.Dedicated to Professor Valdo Mazzi (Dipartimento di Biologia Animale, Università di Torino), in honor of his 70th birthday  相似文献   

17.
Summary Systemic administration of monosodium-1-gluta-mate by single injections of 4 mg/g body weight in infant rats (2–10 days of age) results in acute swelling of cytoplasm and nuclear pyknosis of neurons in the stratum zonale and stratum griseum superficiale of the superior colliculus. Multiple daily doses of 4 mg/g body weight monosodium-1-glutamate result in an almost complete loss of neurons in these two superficial layers. The deeper layers appear not to be affected. No pathological effects were observed in the lateral geniculate body or pretectal complex.Light-and electron-microscopic studies reveal that the optic nerves are remarkably shrunken and many myelinated as well as unmyelinated axons are lost. Injection of 3Hproline into the vitreous body of one eye results in limited transport to the suprachiasmatic nucleus, lateral geniculate body and to lateral portions of the superior colliculus.The small percentage of intact axons in the optic nerve, as well as the limited proline transport from the eye, suggest that administration of monosodium-1-glutamate leaves intact some optic fibers, a portion of which belongs to the retinohypothalamic tract.  相似文献   

18.
郑磊  刘再群  宋海燕 《四川动物》2012,31(3):373-377
用免疫组化SABC法研究白介素-1α(IL-1α)、干扰素-γ(IFN-γ)、肿瘤坏死因子-α(TNF-α)和神经生长因子-β(NGF-β)在胚胎后期皖西白鹅中脑的表达与分布,并作统计学处理。结果发现,中央灰质层、中央白质层、室周灰质纤维层、半圆丘、峡核细胞胞质与突起阳性反应明显,其中峡核阳性反应最为明显,顶盖最不明显,且峡核大细胞部纤维着色明显;IL-1α在4种细胞因子中分布范围最广,阳性反应最强;IFN-γ与TNF-α阳性反应中,部分树突着色明显,且IFN-γ染色效果强于TNF-α;NGF-β的阳性突起与纤维较少。由结果可得,细胞因子可能是通过峡核-顶盖通路的作用,由峡核传递到顶盖;IL-1α在中枢神经系统中有重要作用;IFN-γ作为中枢神经系统介质的作用强于TNF-α。  相似文献   

19.
Using immunohistochemistry and a tracer technique we investigated the distribution in the optic tectum of turtles (Emys orbicularis and Testudo horsfieldi) of the calcium-binding proteins (CaBPr) parvalbumin (PV), calbindin (CB) and calretinin (CR) before and after labeling of the nucleus rotundus (Rot) with horseradish peroxidase. The optic tectum activity of the cytochrome oxidase (CO) was studied in parallel. In the principal link of the tectofugal visual pathway (central gray layer, SGC) in both chelonian species, the sparse PV-ir as well as CB- and CR-ir neurons were found significantly varying both in number and the intensity of immunoreactivity of their bodies and dendrites. In contrast, the superficial (SGFS) and deeper periventricular (SGP) tectal layers comprised numerous cells immunoreactive to all three CaBPr in different proportions. Only few retrogradely labeled tectorotundal SGC neurons expressed PV, CB or CR. The very large PV-ir neurons in SGC and SAC were not retrogradely labeled; morphologically they matched the efferent neurons with descending projections. SGC neurons of two chelonian species differed in the level of CO activity. Intense immunoreactivity to all three CaBPr and high CO activity were detected in both species in SGFS neuropil with some differences in sublaminar distribution patterns. The peculiarities of the CaBPr and CO activity distribution patterns in different segments of SGC neurons are discussed as related to the laminar organization of the turtle tectum and its retinal innervation. It is suggested that in the projection tectorotundal SGC neurons the CaBPr are concentrated mainly in their distal dendrites that contact retinal afferents in the superficial retinorecipient tectal layer.  相似文献   

20.
The responses by neurons in various layers of the pigeon's optic tectum to visual stimuli of different sizes moving at various speeds in receptive fields (RF's) were recorded by means of microelectrodes. Analysis of the relationship between the characteristics of the RF's and the location of neurons in the optic tectum showed that with increase in the depth of the layer the structure of the RF's became more complex, their size increased, the effect of peripheral inhibition decreased, and the properties of directional selectivity were displayed more clearly. A wide convergence of signals of different modalities on the efferent neurons of the optic tectum, and their rapid habituation to repeated application of stimuli, were observed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 99–105, January–February, 1971.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号