首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
斜风作用下桥塔施工阶段抖振性能   总被引:5,自引:0,他引:5  
为了研究不同风速、风偏角在施工阶段对桥塔抖振性能的影响,进行了考虑塔吊共同作用的桥塔联合气弹模型风洞试验。试验结果显示:桥塔的抖振位移响应可近似地表示为风速的二次函数,桥塔抖振响应随着风偏角的增加呈非单调变化,施工状态中桥塔顺桥向和横桥向抖振位移响应最大值会出现在非正交风作用下;在施工阶段设计风速下抖振位移响应最大值为0.2746m,在工程可接受范围内,试验得出的抖振位移响应均方根值显著大于抖振时域分析计算值,说明桥塔风洞试验应考虑施工状态和施工机械对其抖振性能的影响。  相似文献   

2.
讨论广州南沙区某钢桁拱桥在自然脉动风中的抖振响应,以具体的工程实例,建立有限元模型,基于谐波合成法数值仿真该地区的三维脉动风场,并将风荷载时程作用在该桥的有限元模型中,以此来分析桥梁的抖振效应,得到了由于抖振产生的位移和内力,最后完成对该桥的抖振时域研究。结果表明,模拟出来的三维脉动风场具有较高的准确度,该桥的抖振响应在成桥状态下不会产生风致病害。  相似文献   

3.
某大跨度斜拉桥施工阶段的抖振控制措施研究   总被引:2,自引:1,他引:1  
介绍了桥梁结构抖振响应计算原理,并以某斜拉桥最大双悬臂态为工程实例计算了结构的抖振响应,然后分别对增设抗风临时拉索和利用塔旁托架两种减振措施进行了分析。结果表明,对于大跨斜拉桥的施工阶段,增设抗风临时拉索和利用塔旁托架是两种具有实际工程意义的抖振控制措施。  相似文献   

4.
为了研究山区非平稳强风下大跨悬索桥静风及抖振响应,以云南普立大桥为工程背景,基于该桥址处实测风速样本,对大跨桥梁展开风致响应分析.首先,根据实测风速样本确定了时变平均风并且估计了脉动风谱.然后,在考虑了恒载结构初始内力状态下进行了非线性静风响应分析.最后,采用虚拟激励法分别针对实测风谱与规范风谱对该桥进行了抖振响应研究.计算结果表明,该大桥的抖振以竖向振动为主,并且其位移响应比静风突出; 10 min常值平均风会低估该桥的静风响应;由规范风谱得到的主梁抖振响应偏于不安全.研究结论可为同类山区大跨桥梁风致静力及抖振响应研究提供参考.   相似文献   

5.
变截面连续钢箱梁桥典型施工阶段涡激振动   总被引:1,自引:1,他引:0       下载免费PDF全文
为探讨大跨度连续钢箱梁桥在吊装施工阶段可能遇到的风致涡激振动问题,提出有效的抑振措施,以崇启6跨变截面连续钢箱梁主桥施工过程为背景,通过 1:45全桥气弹模型风洞试验,研究了大跨度变截面连续梁桥典型施工阶段主梁的涡激振动性能,试验模拟了外加阻尼的抑振措施,并基于试验现象探讨了连续钢箱梁桥的涡激振动机理.研究结果表明:当第2跨主梁架设完成后,主梁易产生涡激振动,且不满足桥梁抗风设计规范的要求.当结构阻尼比达到1.2%时,涡激振动振幅满足规范要求;当结构阻尼比达到2.1%时,施工阶段不会产生明显的涡激振动.   相似文献   

6.
高墩大跨度连续刚构桥在最大悬臂施工状态下,由于结构刚度尚未完全形成,脉动风将会引起的结构较大的抖振响应,势必会对结构本身以及施工安全造成影响。从实际工程应用出发,在对抖振计算反应谱法进行适当简化的基础上考虑了背景响应的影响,获得了连续刚构桥在最大悬臂施工状态下抖振响应的实用计算公式。最后通过气弹模型风洞试验验证了公式的可靠性。  相似文献   

7.
大跨度铁路斜拉桥非线性时域抖振分析   总被引:2,自引:0,他引:2  
通过脉动风速场模拟,获得了桥梁结构时域化风荷载,在此基础上,采用大跨度桥梁抖振的时域分析法,以一大跨度铁路斜拉桥为工程背景,对大跨度铁路斜拉桥抖振的非线性行为进行了分析.分析中综合考虑了结构几何非线性和气动非线性,其中结构几何非线性因素包括拉索垂度、内力引起的梁-柱效应及结构大变位等,气动非线性因素包括攻角效应、自激力等.非线性运动方程采用双重迭代法求解,以提高迭代的收敛性.非线性时域抖振分析和线性分析结果的比较表明,非线性因素会增大结构的抖振响应.  相似文献   

8.
赫章特大桥是一座超高墩的混凝土连续刚构桥,最高墩达到197m,为研究该桥的抗风能力,采用ANSYS10.0建立最大悬臂施工阶段和成桥阶段的有限元模型,并研究动力特性,采用修正傅里叶谱法生成脉动风速时程,基于准定常理论,计算作用在模型上的抖振力时程,由时程分析法分别计算最大悬臂阶段和成桥阶段抖振时域响应。  相似文献   

9.
桥面输送机改变了边主梁的气动外形,为研究其涡振性能及抑振措施,开展了1.00∶20.00刚性节段模型自由悬挂风洞试验. 首先,研究了带输送机边主梁断面涡振性能,并测试了结构阻尼比对其的影响;其次,对比了有、无输送带边主梁的涡振性能;最后,采用风嘴、梁底稳定板、水平隔流板等气动措施对主梁断面涡振性能进行了优化研究. 结果表明:带输送机边主梁在规范要求的0°、±3° 风攻角下的涡振性能均较差,最大超出规范限值286%;桥面输送机降低了主梁的涡振稳定性,涡振响应峰值提高了44%;梁底安装稳定板有利于改善主梁的涡振性能,并且与梁底同高的稳定板制振效果随其数量的增加而更优,安装3道1.5 m下稳定板对主梁涡振抑制效果达93%;伸出梁底0.5 m的2.0 m高中央稳定板能完全抑制主梁涡振;风嘴对主梁的涡振性能影响较弱,但在一定范围内具有最优角度取值;梁底单独布置水平隔流板,涡振响应峰值降低17%;优化主梁截面采用风嘴 + 风嘴水平分流板 + 1 m宽水平隔流板,主梁涡振响应峰值降低92%,且远低于规范限值.   相似文献   

10.
为研究波形钢腹板部分斜拉桥在悬臂施工阶段主梁的剪力滞规律,以某单箱四室斜腹板波形钢腹板部分斜拉桥为实例,采用Midas/FEA有限元软件建立精细有限单元计算模型,研究悬臂施工阶段主梁的剪力滞效应分布规律。计算结果表明:在主梁最大悬臂状态,悬臂根部截面主梁顶板的应力分布最不均匀,剪力滞系数最大,其剪力滞系数离开悬臂根部后迅速减小,然后经历增大减小再增大的过程;梁段顶板在自重、斜拉索、预应力荷载共同作用下截面剪力滞效应受预应力荷载效应控制,均多呈现正剪力滞效应;主梁施工过程中,截面剪力滞效应规律不变;在桥梁施工过程分析时以主梁最大悬臂状态下的箱梁顶底板剪力滞系数为参考。  相似文献   

11.
大跨度悬索桥在跨越大江、大河、深沟、峡谷时越来越受到青睐,而随着桥梁跨度增大、索塔的增高,大跨度悬索桥越发轻柔,对风致振动也越加敏感。在施工过程中,较高、较柔索塔在独塔状态下的抗风性能相对较差,应予以高度重视。对某主跨828m的铁路悬索桥主塔,运用流体动力学(CFD)方法模拟分析了主塔断面在风作用下的涡振性能。结果表明,索塔断面背风侧有明显的漩涡脱落,较钝的索塔断面易受风致涡振影响;独塔状态下索塔的涡振风速为15~18m/s,风速相对较低,发生概率较高;建议采用较为圆滑的断面并在独塔施工中做好横向连接,同时尽量避免在多风季节施工。  相似文献   

12.
风致抖振响应对于桥梁顶推施工过程具有重要的影响。以张家口市宣化区胜利路桥新建工程为对象,开展主桥桥型设计比选研究,并采用ANSYS进行顶推施工抖振响应数值模拟。对主桥桥型设计进行比选,选择采用钢桥面系,带竖杆华仑桁架,钢-混凝土组合桥面铺装的简支钢桁架桥分幅桥梁方案。风荷载作用下,同一横断面处不同主桁处支座反力不同,对竖向支座反力而言,下游边桁架处最大,中间支座反力次之,上游支座反力最小。计算发现,在不考虑、考虑墩梁耦合效应两种状态时,下游边桁架支座反力峰值分别占恒载反力的10.5%和13%,中桁架支座反力峰值分别占恒载反力的5%、6.9%,上游边桁架支座反力峰值约占恒载反力的比例分别是6.5%、7.1%,可见墩梁耦合效应对该桥的抖振响应影响较小,可以忽略。结论可为今后类似工程设计与施工提供参考。  相似文献   

13.
悬索桥跨径越大,结构越轻柔,对风致振动越敏感,因此,研究悬索桥主梁抗风性能尤为重要。对某主跨1196m大跨度悬索桥,采用有限元建模计算分析了成桥状态的结构动力特性;通过静力节段模型试验,测试了成桥状态主梁的三分力系数,结果表明:该扁平加劲梁整体上具有较好的静风稳定性能;通过动力节段模型试验考察了成桥状态桥梁在风攻角为0°、±3°、±5°下的颤振稳定性能,风攻角为+3°和+5°时,颤振临界风速接近或低于颤振检验风速,其余风攻角下颤振稳定性能良好;通过优化人行栏杆构造、增大透风率对主梁断面进行优化,有效改善了主梁断面的气动性能。  相似文献   

14.
以主跨为200m的预应力混凝土三跨连续刚构桥为工程背景,通过数值分析,讨论了其动力特性;给出了设计风速范围内两种不同工况作用下最大双悬臂施工状态主梁各控制截面的风致内力。  相似文献   

15.
以主跨为200m的预应力混凝土三跨连续刚构桥为工程背景,通过数值分析,讨论了其动力特性;给出了设计风速范围内、两种不同工况作用下,最大双悬臂施工状态主梁各控制截面的风致内力。  相似文献   

16.
以刘家峡大桥为工程背景,建立了钢桁架梁悬索桥的有限元模型,采用改进谐波合成法模拟了脉动风荷载,结合大跨桥梁颤抖振分析的基本理论,计算了对应于桥梁各节点的静风力、抖振力和自激力.在此基础上,利用ANSYS参数化设计语言(APDL)编制了相应的计算程序,将计算所得的各类风荷载施加在全桥有限元模型的节点上,对刘家峡桁架梁悬索桥进行了颤抖振时域分析,以精确求解不同桥面基准风速下,桥梁各关键部位的抖振扭转角、抖振侧向位移、抖振竖向位移,进而研究了风速变化对悬索桥最大颤抖振响应的影响.与全桥模型风洞试验的对比结果表明:对大跨桥的颤抖振分析方法是合理可行的,可为同类大跨桥梁风致振动的研究提供科学的依据和参考.  相似文献   

17.
采用平转施工的T形刚构桥梁在转体之前,拆除施工支架,处于大悬臂状态,结构刚度较小,在风的作用下稳定性较差.结合内蒙古集宁市的京包铁路分离式立交桥,桥址处多阵风且风速较大,分析该转体施工T形刚构桥梁的抗风性能,通过对该桥进行了抖振时域分析,得到其位移时程结果.大悬臂T构的结构横向刚度最小,位移最大.结果表明结构在风荷载的作用下较安全,但风荷载的作用不可忽略.  相似文献   

18.
为深入研究不同截面形式开口断面主梁的涡振性能及其发生机理,针对半开口和分离边箱开口断面2种主梁,进行了1∶50节段模型风洞试验,考虑等效质量、风攻角和阻尼比等因素的影响,计算了2种主梁断面的斯托罗哈数;基于线性和非线性理论,估算了实桥竖向涡振振幅;建立了二维数值模拟分析模型,验证了数值模拟方法的准确性,并对比了2种主梁断面周围的瞬时涡量和平均流线结构。分析结果表明:2种主梁在风攻角为3°和5°时均发生竖向涡振,且出现2个涡振区,第2个涡振区主梁竖向涡振最大振幅明显大,5°风攻角时2种主梁竖向涡振振幅比3°风攻角时大75%;风攻角为5°,阻尼比为0.8%时,分离边箱开口断面主梁竖向涡振最大振幅比开口断面大28%;随着Scruton数的增大,主梁竖向涡振的最大振幅接近线性减小,相同Scruton数工况下,5°风攻角时分离边箱开口断面主梁竖向涡振振幅最大,3°风攻角时半开口断面主梁振幅最小,说明正风攻角越大,主梁断面越钝,其涡振性能越差;5°风攻角时分离开口断面更钝,引起气流更大的分离,来流风在2种主梁断面的桥面上方和主梁开口处均形成漩涡,由于斜腹板和风嘴作用,主梁开口处尺寸较大的漩涡被打碎为几个尺寸接近的较小漩涡,优化了主梁的涡振性能。   相似文献   

19.
大跨桥梁的涡激共振常采用节段模型风洞试验进行测量,但节段模型试验建立在二维理论上,当桥梁由于分段式声屏障导致沿跨向存在多种气动外形时,涡振响应难以通过节段试验直接测量.本文基于线性涡激力模型提出考虑多气动外形影响的节段-实桥涡振幅值反演方法.首先,分别对带屏障与无屏障段截面进行节段模型风洞试验;然后,通过ANSYS谐响应分析,反演全跨布置与不布置屏障两种工况的实桥涡振幅值,获得对应的涡激荷载幅值;最后,根据声屏障实际布置位置分段施加涡激荷载,得到设置分段式声屏障桥梁的实桥涡振响应,并基于本文方法对不同声屏障布置方案进行了参数分析与讨论.试验结果表明:全封闭声屏障会显著降低主梁抗风性能,屏障的分段布置对整体涡振影响较大;本文方法可通过节段模型试验结果直接估算多气动外形桥梁的全桥涡振响应,声屏障布置应在满足降噪条件下尽量布置于边跨,若布置长度超过桥塔位置,须尽量缩短布置长度以减小涡振响应.  相似文献   

20.
苏通大桥主跨为1 088 m,结构轻柔,抗风问题在大桥的设计阶段备受关注。大桥通车后,通过桥梁风场数据,发现虽然遭受了几次严重的台风袭击,但风致振动并不十分明显。2012年8月台风"海葵"对苏通大桥的风致振动产生了较为明显的影响,为此对其作用下的桥梁风场特性及相应规律进行了调查和分析,并基于结构健康监测系统,对桥梁结构响应进行了分析。结果表明,在本次台风作用下桥面最大风速为24.0 m/s,最大响应表现为主梁横向变形19 cm。通过与风洞试验结果相比较,发现桥梁风振响应能够与全桥气弹模型试验结果较好吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号