首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
本文选用MgO-Al2O3作为复合添加剂,采用无压烧结,设计Si3N4-MgO-Al2O3系烧结体、Si3N4-SiC-MgO-Al2O3系烧结体,研究各种配方在不同忝型压力不同烧结条件下烧结体的性能,测定室温抗折强度、体积密度、体积变化和气孔率,通过X射线衍射分析鉴定烧结体的物相结构,从而确定了最佳工工艺范围。  相似文献   

2.
本文选用MgO—Al2O3作为复合添加剂,采用无压烧结,设计Si3N4一MgO—Al2O3系烧结体、Si3N4—SiC—MgO—Al2O3系烧结体,研究各种配方在不同成型压力不同烧结条件下烧结体的性能,测定室温抗折强度、体积密度、体积变化和气孔率。通过X射线衍射分析鉴定烧结体的物相结构,从而确定了最佳工艺范围。  相似文献   

3.
添加Mg-Al-Si体系烧结助剂的氮化硅陶瓷的无压烧结   总被引:9,自引:1,他引:8  
以MgO-Al2O3-SiO2体系作为烧结助剂,研究了氮化硅陶瓷的无压烧结。着重考察了烧结温度、保温时间以及烧结助剂用量等工艺因素对氮化硅陶瓷材料力学性能和显微结构的影响,通过工艺调整来设计材料微观结构以提高材料的力学性能。在烧结助剂质量分数为3.2%的情况下,经1 780℃,3 h无压烧结,氮化硅大都呈现长柱状β-Si3N4晶粒,具有较大的长径比,显微结构均匀。样品的相对密度达99%,抗弯强度为956.8 MPa,硬度HRA为93,断裂韧性为6.1 MPa·m1/3。具有较大长径比晶粒构成的显微结构是该材料表现较高力学性能的原因。  相似文献   

4.
以β-Si3N4粉末为原料,MgAl2O4为烧结助剂,通过气氛压力烧结(GPS)制备出致密的β-氮化硅陶瓷材料,探讨了β-氮化硅陶瓷烧结机制,系统研究了烧结助剂质量分数、烧结温度以及保温时间对材料致密化的影响.  相似文献   

5.
以α-Si3N4粉末为原料,Y2O3和MgAl2O4体系为烧结助剂,采用无压烧结方式,研究了烧结温度、保温时间、烧结助剂含量以及各组分配比对氮化硅致密化及力学性能的影响。结果表明:以Y2O3和MgAl2O4为烧结助剂体系,氮化硅陶瓷在烧结温度为1 600 ℃,保温时间为4 h,烧结助剂含量为12.5%(质量分数),Y2O3和MgAl2O4质量比为1∶1时,综合性能最好;氮化硅陶瓷显气孔率为0.21%,相对密度为98.10%,抗弯强度为598 MPa,维氏硬度为15.55 GPa。  相似文献   

6.
氮气压力对氮化硅烧结行为的影响   总被引:5,自引:1,他引:4  
彭刚  江尧忠 《硅酸盐通报》1997,16(4):27-30,34
本文在1400-1700℃温度范围内,分别在30atm和1atm的N2中氮化硅陶瓷的烧结行为进行了比较研究,对比试验结果表明,在气压烧结过程吕其致密化和α-β相变速率滞后于常压烧结,晶界第二相组成也有所不同。为了避免高压气氮气被包陷和致密化滞后,在气压烧结过程的前期应避免使用高压氮气。  相似文献   

7.
氮化硅陶瓷的微波烧结   总被引:4,自引:0,他引:4  
利用TE103单模腔微波烧结系统对添加6%(Y2O3+Al2O3)的α、β-SiN4粉的微波加热特征进行了研究。通过选择合理的保温材料和烧结工艺,获得了较高密度、结构均的氮化硅烧结体。实验发现,对于粉末为α-Si3N4的试样,在相变发生的温度内,相变的发生比较密化进程更早而且发生在一个相对更低的温度,研究结果也表明,在微波烧结中相变促进致密化进程。在较短的内警备交高的密度和较好的力学性质,氮化硅的  相似文献   

8.
采用新型振荡压力烧结技术制备高性能氮化硅陶瓷,并对比热压烧结技术,研究了不同工艺下氮化硅陶瓷的致密度、物相、晶粒尺寸、微观形貌及力学性能变化规律,分析了振荡压力对氮化硅陶瓷的致密化作用.结果表明:振荡压力烧结工艺下氮化硅陶瓷实现了α相到β相的物相完全转变,相对密度达到了99.82%;对比热压烧结工艺,振荡压力作用下氮化...  相似文献   

9.
按照不同的实验方案对碳化硼原料进行烧结,结果发现在2 108~2 226℃下进行无压烧结能得到高纯碳化硼制品,使用Al气和由SiC制得的Si气做为助烧结气,在2 226℃可得到高致密性的B4C制品,体积密度为2.455g.cm-3,约为理论密度的97.4%。  相似文献   

10.
武振飞  李祯 《江苏陶瓷》2021,54(6):23-25
本文以α-Si3N4粉为原料,含量为10%的Y203和Al203为烧结助剂,成功地在空气气氛炉中对氮化硅样品进行了烧结,研究了烧结温度、保温时间以及埋烧粉的粒度对氮化硅的氧化程度及致密化的影响.结果 表明:提高烧结温度和适当地延长保温时间可以提高氮化硅的致密化程度,但会增加氮化硅的氧化程度;埋烧粉粒径的尺寸也会影响氮化...  相似文献   

11.
By using α-Si3N4 and β-Si3N4 starting powders with similar particle size and distribution, the effect of α-β (β') phase transition on densification and microstructure is investigated during the liquid-phase sintering of 82Si3N4·9Al2O3·9Y2O3 (wt%) and 80Si3N4·13Al2O3·5AIN·5AIN·2Y2O3. When α-Si3N4 powder is used, the grains become elongated, apparently hindering the densification process. Hence, the phase transition does not enhance the densification.  相似文献   

12.
以四甲基氢氧化铵为分散剂,糊精为碳源,通过静电稳定作用,制备了高固相含量、分散良好的碳化硅陶瓷浆料。以水溶性N,N–二甲基丙烯酰胺为单体,N,N’–亚甲基双丙烯酰胺为交联剂,采用实验室开发的偶氮[2–(2–咪唑啉–2–基)]丙烷HCl引发体系,在45~50℃引发单体聚合,制备出水基凝胶注模碳化硅素坯,素坯的相对密度达58%,抗弯强度大于40MPa。进一步通过无压烧结制备相对密度高于98%,硬度达28GPa,强度达530 MPa的SiC陶瓷。对素坯和SiC陶瓷的微结构和力学性能进行了测试和表征。结果表明:采用糊精作为碳源可以提高凝胶注模浆料的分散性,避免凝胶过程中的碳阻聚问题,有利于制备出高性能的碳化硅陶瓷材料。  相似文献   

13.
以α-Si3 N4为原料,Y2 O3和MgO为复合烧结助剂,通过无压烧结制备出氮化硅陶瓷。为了优化实验配方和工艺参数,采用正交实验研究了成型压力、保压时间、保温时间、烧结温度、烧结助剂含量以及配比对氮化硅陶瓷气孔率和抗弯强度的影响规律。结果表明,影响氮化硅陶瓷气孔率的主要因素是烧结助剂含量和配比,而影响其抗弯强度的主要因素是烧结助剂配比和烧结温度。经分析得出,最佳工艺参数为成型压力16 MPa,保压时间120 s,保温时间2 h,烧结温度1750℃,烧结助剂含量12wt%,烧结助剂配比1∶1;经最佳工艺烧结后的氮化硅陶瓷,相对密度为94.53%,气孔率为1.09%,抗弯强度为410.73 MPa。  相似文献   

14.
采用常压固相烧结工艺,制备出高纯度、高致密度的氧化钨靶材。考察了粉体粒度、成型压强、烧结温度和保温时间等对靶材致密度的影响。测试结果表明,以粒度0.27μm的粉体为原料,成型压强为60MPa,烧结温度为1200℃,保温时间为1h的条件下,可以制备出高致密度的氧化钨靶材,其组成为高纯的单斜晶相。  相似文献   

15.
分析了二氧化锆的性质及氧空位对二氧化锆相变的影响 ,讨论了二氧化锆韧化氮化硅陶瓷的影响因素 ,提出了二氧化锆韧化氮化硅陶瓷时避免氮化锆生成、促进复相氮化硅陶瓷烧结的途径。  相似文献   

16.
本研究了Si3N4-MgO—Y2O3-CeO2陶瓷的烧结过程和微观结构,常压烧结氮化硅陶瓷的致密化主要通过液相烧结实现。微观分析结果表明,氮化硅烧结体的显微结构为等轴状的α—Si3N4和长柱状的β—Si3N4相互交织,这种结构有利于提高烧结体的强度和韧性。  相似文献   

17.
低温放电等离子烧结法制备氮化硅陶瓷   总被引:1,自引:0,他引:1  
分别以MgO-Al2O3或MgO-AlPO4作为烧结助剂,采用放电等离子体低温快速烧结方法制备了主相为α相的Si3N4陶瓷材料.采用X射线衍射和扫描电子显微镜分析了样品的物相组成和显微结构;研究了烧结助剂及其含量、烧结温度对陶瓷样品的相对密度与力学性能的影响.结果表明:当采用4%质量分数,下同)MgO-4%Al2O3烧...  相似文献   

18.
烧结助剂对氮化硅陶瓷显微结构和性能的影响   总被引:3,自引:0,他引:3  
氮化硅中氮原子和硅原子的自扩散系数很低,致密化所必需的扩散速度和烧结驱动力都很小,在烧结过程中需采用烧结助剂。烧结助剂是影响氮化硅陶瓷的显微结构和性能的关键因素之一。有效的烧结助剂不但可以改善氮化硅陶瓷的显微结构,而且可以提高氮化硅陶瓷的高温性能和抗氧化性能。  相似文献   

19.
The influence of reaction-bonded silicon nitride (RBSN) characteristics, especially the crystalline secondary phases formed during the nitridation process, on the densification behavior of RBSN and the resulting microstructure of the sintered material during postsintering under increased nitrogen pressure is discussed. The type and amount of the secondary phases are controlled by the chemical characteristics of the Si starting powder and the additive composition. Three different commercially available Si powders which reveal particular differences in the Fe and Al content were investigated, and a correlation between the microstructural characteristics of RBSN and of the postsintered materials is presented. It is shown that besides micropore size distribution the crystalline secondary phases play an important part in the densification behavior during postsintering and the resulting microstructure of postsintered reaction-bonded silicon nitride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号