首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过拟静力试验,研究由跨中部消能梁段和两端非消能梁段组成的可更换钢连梁的抗震性能和震后可更换能力。试验共包括4个连梁试件,采用4种不同的消能梁段与非消能梁段连接方式,分别为端板-抗剪键连接、拼接板连接、腹板-螺栓连接、腹板-结构胶连接。试验结果表明:采用端板-抗剪键连接时,连梁的塑性变形和损伤集中在消能梁段,连梁的极限塑性转角可达0.06 rad,具有稳定的滞回耗能能力;采用拼接板连接或腹板-螺栓连接时,消能梁段剪切屈服,连接处摩擦型高强螺栓有不同程度的滑移,连梁的极限塑性转角也可达0.06 rad;采用腹板-结构胶连接时,连接处结构胶开裂导致连梁脆性破坏。在连梁转角为0.02 rad加载后对消能梁段进行更换,采用端板-抗剪键连接的试件更换时间最短,而腹板-螺栓连接的试件能在更大的残余转角时更换。此外,消能梁段在较大塑性剪切变形时伴有轴向变形,导致连梁试件承受较大轴力,连梁的轴力影响需要进一步研究。  相似文献   

2.
为实现工程中可更换连梁震后可更换性的快速评估,针对采用H形钢作为消能梁段的可更换连梁展开研究,探讨该类构件的损伤后可更换性。以连接处螺栓孔相对位置为判别依据,以消能梁段残余剪切角为评价指标的连梁可更换性评估方法,设计3种可更换连梁连接形式,分别为端板-螺栓群连接(CI型)、耳板-螺栓群连接(CII型)以及螺栓-抗剪键连接(CIII型);分别通过评估方法及更换试验对3种连接形式试件的可更换性进行对比分析。研究结果表明:采用CI型连接的试件最大可更换残余剪切角及更换用时分别为0.007 rad及40 min,采用CII型连接的试件最大可更换残余剪切角及更换用时分别为0.008 rad及280 min,采用CIII型连接的试件最大可更换残余剪切角及更换用时分别为0.01 rad及50 min,故采用CIII型连接的试件具有最好的损伤后可更换性。  相似文献   

3.
以3个钢连梁试件为对象,采用2种不同的连接方式以及变换可更换段钢梁的截面高度,对可更换钢梁的抗震性能进行了试验研究.在抗震试验中,将钢梁分为3段,并削弱中间段,使破坏发生在中间段.考察试件的破坏形态、滞回曲线、骨架曲线、刚度退化、延性性能、耗能性能等指标.试验结果表明:试验中3个试件均发生了破坏,在连接方式相同的情况下...  相似文献   

4.
通过12个可更换钢连梁中消能梁段试件的拟静力试验,研究其抗震性能。试验参数包括腹板钢材类型、梁段长度、加劲肋布置方式和加载制度。试验结果表明:试件为剪切屈服型,破坏模式为加劲肋-腹板焊缝断裂或翼缘-端板焊缝断裂;试件的超强系数平均值为1.86,大于Popov等学者的建议值1.5;试件的极限塑性转角约为0.15 rad,远大于规范AISC 341-10规定的塑性变形限值0.08 rad;梁段腹板采用低屈服钢LY225代替Q235钢时,试件的极限塑性转角增大23%,试件的累积塑性转角增大52%;加劲肋单面布设或双面布设对试件的抗震性能影响不大,但加大加劲肋间距会导致腹板提前屈曲和试件承载力退化,建议低屈服钢消能梁段的加劲肋布置按照规范AISC 341-10和GB 50011-2010对一般消能梁段的规定。在剪切往复荷载作用下,试件的轴向位移由几何位移和塑性轴向变形两部分组成,试件的塑性轴向变形与其累积塑性转角成正比。  相似文献   

5.
连梁是结构抗震的重要构件,连梁的破坏可以消耗地震的能量,从而保护结构安全.为了保证钢连梁的优势充分发挥出来,钢连梁与结构的节点连接形式成为很多学者研究的重点.本文归纳总结了四种常见钢连梁节点连接方式的特点和研究进展,在分析现有研究结果的基础上,发现上述四种连接方式存在的不足和需要改善之处,为工程应用提供参考.研究发现用...  相似文献   

6.
提出了一种应用于联肢剪力墙体系的新型钢连梁,称之为双阶屈服消能钢连梁,并且在此基础上提出了基于小震消能的双阶屈服钢连梁联肢剪力墙体系的抗震设计方法。该新型钢连梁由两部分并联而成,分别是发生剪切屈服的核心板梁和发生弯曲屈服的外套箱形梁。在小震作用下,剪切屈服板梁进入塑性,发挥消能减震作用,弯曲屈服梁保持弹性从而保证结构的整体刚度。在中震及大震作用下,剪切屈服梁和弯曲屈服梁同时进入塑性,发挥更大的消能作用,使主体结构免遭过大的地震损伤。在合理考虑第1阶屈服力和第2刚度与第1刚度比的基础上,提出了针对双阶屈服钢连梁联肢剪力墙体系的小震消能减震设计方法.根据该方法设计了一个20层的双阶屈服消能钢连梁联肢墙结构,最后通过弹塑性时程分析验证了该方法的合理性。  相似文献   

7.
文章率先提出一种新型防屈曲高强钢腹板可更换钢连梁(简称“新型钢连梁”):腹板采用高强钢,可提高钢连梁的屈服抗剪强度,连梁变形减小,从而减小可更换结构整体变形,便于更换;加劲肋紧贴腹板(但不焊接)提供约束,仅与上下翼缘焊接,可减少60%以上的焊接量。其次,设计并开展了11个试件的拟静力试验,研究了加劲肋间距(规范限值dmax、0.85dmax)、腹板厚度(6mm、8mm)、腹板钢材强度(Q460、Q550)和构造形式(加劲肋与腹板贴紧或焊接)等参数对新型钢连梁抗震性能的影响。试验结果表明:试件均发生剪切破坏;满足加劲肋间距限值的新型钢连梁,滞回曲线饱满,峰值时腹板未发生鼓曲且极限转角均超过0.1rad,大于规范限值0.08rad,表现出良好的耗能和变形能力;缩小加劲肋间距、增加腹板厚度或提高腹板钢材强度,新型钢连梁刚度及承载力提高;新型钢连梁峰值承载力较传统构造试件低约5%。最后,基于试验结果建立了有限元模型并开展了分析,研究结果表明:对腹板采用Q460、Q550高强钢材的新型钢连梁,峰值承载力计算时超强系数建议取1.43(长度比为0.5~1.0)或1.39(长度比为1.0~1.6)、1.25,以期为实际工程设计提供依据。  相似文献   

8.
郑人山 《山西建筑》2008,34(9):123-124
阐述了研究钢筋混凝土剪力墙的必要性,介绍了单片剪力墙的设计要求及钢筋混凝土剪力墙墙肢的配筋要求,分析了剪力墙的连梁设计,并提出了框架一剪力墙结构中剪力墙的布置应满足的要求,可供结构设计人员参考。  相似文献   

9.
为了改善传统钢框筒结构抗震性能较差的问题,提出了带端板螺栓连接可更换剪切型耗能梁段的高强钢框筒结构(HSS-FTS-RSLs).考虑耗能梁段长度和楼板的影响,设计了 3个2/3比例的单层单跨HSS-FTS-RSLs子结构试件,对这3个试件进行低周往复加载试验并进行耗能梁段的更换,研究HSS-FTS-RSLs的抗震性能和震后可更换能力.试验结果表明:带端板螺栓连接的子结构试件在地震作用下滞回曲线饱满,损伤主要集中于耗能梁段,具有良好的抗震性能;更换耗能梁段后不会影响结构的刚度和承载力以及连接处的传力性能,结构的可更换允许残余层间侧移为0.40%;楼板可以使结构的弹性刚度和承载力分别提高7.40%和5.21%,楼板损伤主要集中在耗能梁段与裙梁连接区域上方;剪切型耗能梁段在循环荷载作用下超强系数为1.63~1.81,最大塑性转角可达到0.15~0.21rad,呈现出良好的超强和变形能力;耗能梁段长度比e/(Mp/Vp)(其中e为耗能梁段长度,Mp、Vp分别为耗能梁段的塑性受弯承载力和塑性受剪承载力)越小,结构的刚度和承载力越高,耗能梁段的变形能力越强.  相似文献   

10.
为了改善传统钢框筒结构抗震性能较差的问题,提出了带端板螺栓连接可更换剪切型耗能梁段的高强钢框筒结构(HSS-FTS-RSLs).考虑耗能梁段长度和楼板的影响,设计了 3个2/3比例的单层单跨HSS-FTS-RSLs子结构试件,对这3个试件进行低周往复加载试验并进行耗能梁段的更换,研究HSS-FTS-RSLs的抗震性能和震后可更换能力.试验结果表明:带端板螺栓连接的子结构试件在地震作用下滞回曲线饱满,损伤主要集中于耗能梁段,具有良好的抗震性能;更换耗能梁段后不会影响结构的刚度和承载力以及连接处的传力性能,结构的可更换允许残余层间侧移为0.40%;楼板可以使结构的弹性刚度和承载力分别提高7.40%和5.21%,楼板损伤主要集中在耗能梁段与裙梁连接区域上方;剪切型耗能梁段在循环荷载作用下超强系数为1.63~1.81,最大塑性转角可达到0.15~0.21rad,呈现出良好的超强和变形能力;耗能梁段长度比e/(Mp/Vp)(其中e为耗能梁段长度,Mp、Vp分别为耗能梁段的塑性受弯承载力和塑性受剪承载力)越小,结构的刚度和承载力越高,耗能梁段的变形能力越强.  相似文献   

11.
12.
混合联肢墙结构具有抗震性能好、震后便于修复等特点,能够较好地适用于高烈度地区的建筑。钢连梁与剪力墙的连接节点承担着传递墙肢间内力的作用,是混合联肢墙结构体系的重要组成部分,其中的嵌入式节点是最常用的连接方式。通过总结嵌入式连接节点的7种力学模型,包括基本假定、节点承载力与钢梁嵌入计算长度间的关系、影响节点承载力因素、钢梁的有效计算宽度等,梳理了相关文献对钢梁嵌入设计长度及节点细部构造的建议,指出了既有研究成果及存在的不足之处。基于以上研究,给出了将钢梁段与剪力墙的连接在工厂进行预制的新思路,提出了装配式混合联肢墙结构体系,并为新型节点的研究明确了方向。  相似文献   

13.
针对传统钢框筒结构地震耗能差和震后修复难度大等问题,结合剪切型耗能梁段耗能能力强及震后易修复、钢框筒抗侧刚度大、高强钢强度高且节约材料的优点,提出一种新型高层钢结构形式——含可更换剪切型耗能梁段的高强钢框筒结构(HSS-FTS)。给出了HSS-FTS的初步设计方法和耗能梁段的布置原则。为比较HSS-FTS和传统钢框筒结构(FTS)的抗震性能,采用SAP2000各建立了一个40层的HSS-FTS和FTS有限元模型,验证了有限元建模的合理性,分别对两个结构进行反应谱分析和动力弹塑性时程分析。结果表明:多遇地震下,HSS-FTS和FTS的层间位移角、基底剪力、楼层剪力和剪力滞后效应无显著差别,HSS-FTS可以满足抗震规范层间位移角的限值要求。罕遇地震和超大震作用下,HSS-FTS的柱轴力分布相比FTS更为均匀,减小了结构的剪力滞后效应,HSS-FTS的塑性铰主要集中在耗能梁段处,改变了FTS的塑性铰发展机制,具有理想的破坏模式。在罕遇地震和超大震作用下,HSS-FTS的层间位移角相比FTS分别降低了11.98%和13.63%,可有效减小震后结构的残余变形,降低耗能梁段的更换难度。HSS-FTS改变了FTS的耗能机制,在罕遇地震和超大震作用下,其耗能量相比FTS分别提高了86.58%和151.09%,其耗能能力显著提升,有效降低了结构的水平地震作用,可减轻除耗能梁段外的非耗能构件受损程度,此种新型高层钢结构形式更易于震后修复与功能的快速恢复。  相似文献   

14.
地震作用下,传统钢框筒结构难以实现强柱弱梁的设计理念,大震下柱端往往先于梁端出现塑性铰。针对这一问题提出了含可更换剪切型耗能梁段的钢框筒结构,即在裙梁中设置可更换的剪切型耗能梁段,大震作用下结构利用剪切型耗能梁段良好的弹塑性变形能力进行耗能,其余构件仍处于弹性状态或部分发展塑性。设计了一组算例结构,包括传统钢框筒结构和含可更换剪切型耗能梁段的钢框筒结构,采用SAP2000有限元分析软件对算例结构进行了弹性和弹塑性地震反应分析,对比了传统钢框筒结构和不同耗能梁段布置形式的含可更换剪切型耗能梁段的钢框筒结构在多遇地震、罕遇地震和极罕遇地震作用下的抗震性能和破坏模式。结果表明:在裙梁中设置剪切型耗能梁段对结构整体刚度的影响较小,含可更换剪切型耗能梁段的钢框筒结构改变了传统钢框筒结构的耗能机制,主要通过耗能梁段的剪切变形代替裙梁端部塑性铰耗能。罕遇地震作用下耗能梁段全部进入塑性耗能,震后仅需替换损伤严重的耗能梁段即可快速恢复结构的使用功能。极罕遇地震作用下,传统钢框筒结构达到极限状态,而含可更换剪切型耗能梁段的钢框筒结构的耗能梁段进一步发展塑性,其余构件保持弹性,结构具有足够的安全储备。  相似文献   

15.
我国高层建筑已经进入广泛应用钢-混凝土组合剪力墙的阶段。由钢-混凝土组合墙肢耦合而成的联肢组合墙中,由于钢构件预埋于墙肢边缘区域,给传统连梁的应用带来了困难。为了开发出适用于联肢钢-混组合剪力墙的连梁形式,将钢结构中常用的端板螺栓连接构造引入,利用其构造简单、易于施工且抗震性能良好的优点,连接钢连梁与组合剪力墙。以连梁长细比为主要参数,设计并制作5个采用端板螺栓连接的双肢组合剪力墙试件和1个传统直插式的小比例双肢钢筋混凝土剪力墙试件,进行低周往复拟静力加载试验,以考察端板螺栓连接钢连梁的受力特征、滞回性能、刚度与强度退化特征以及破坏模式。利用有限元分析方法对试验过程进行数值模拟并与试验结果对比。结果表明,端板螺栓连接钢连梁能够达到较高的延性水平和较大的耗能能力,刚度、强度退化不明显。试验加载过程的剪力-侧向位移骨架曲线与有限元分析结果吻合较好。  相似文献   

16.
偏心支撑框架兼具纯框架延性好和中心支撑框架强度刚度高的优点,强震作用下结构的塑性变形主要集中在消能连梁,而其余部位保持在弹性阶段。结构中消能连梁的翼缘常与楼层板相连,会给消能连梁的更换带来困难。为此,提出将剪切型消能连梁的腹板移出,然后将腹板两端焊接端板,通过螺栓重新组成可更换新型消能连梁。该新型连梁主要由上、下翼缘板和可更换新型腹板组成。通过理论推导给出了可更换消能连梁弹性刚度、屈服承载力和剪切屈服型临界长度等关键参数的解析计算式,并通过有限元确认其准确性。此外,有限元分析也表明可更换消能连梁滞回曲线饱满稳定,耗能能力强,当连梁剪切变形逐渐增大时,新型腹板首先发生剪切屈服,然后发生全截面屈服,而上、下翼缘只有端部表面进入屈服,其余部分保持在弹性阶段,实现了消能连梁的主要损伤集中在新型可更换腹板上。  相似文献   

17.
18.
洞口连梁是钢筋混凝土抗震联肢剪力墙中保证延性及耗能性能的关键部件,但小跨高比洞口连梁因其特殊剪切受力机理,使它在不采取特殊配筋构造措施的前提下难以满足所需的延性要求。本文作者所在研究组通过对小跨高比洞口连梁的剪 弯受力机理的分析研究,提出了一种采用附加对角斜筋和菱形筋的新型配筋方案。经过共计20个接近足尺连梁试件低周反复加载试验证实,这种配筋方案的洞口连梁具有良好的延性及耗能性,且施工难度不大。本文在总结已完成试验结果的基础上,为此类新型配筋小跨高比连梁提出了一整套设计方法,供工程设计及修订国家标准参考。  相似文献   

19.
型钢混凝土剪力墙具有抗震性能好、便于装配化的优点,该墙体和钢连梁连接节点的抗震性能严重影响结构体系的安全。采用ABAQUS有限元软件建立精细化模型,分析了以剪切塑性变形为主的节点和以弯曲塑性变形为主的节点的抗震性能。通过低周往复加载,观察节点的破坏形态,并对节点的滞回性能、骨架曲线、刚度退化曲线、等效黏滞阻尼系数以及位移延性系数等进行分析,探明了节点处腋梁、侧肋板、墙体斜撑及翼缘削弱等对节点抗震性能的影响。研究表明:节点处设置腋梁或侧肋板可提高节点初始刚度及承载力,并使塑性铰外移,减小边柱变形,实现“强节点”的抗震需求,但增加侧肋板将降低节点的延性;翼缘削弱将降低节点初始刚度及承载力,但对刚度退化影响较小;翼缘削弱后增设腋梁、侧肋板和斜撑对节点滞回曲线和骨架曲线影响较小。  相似文献   

20.
提出了一种能保证小跨高比连梁良好抗震性能且施工简单的新配筋方案。小跨高比连梁属于两端有约束的反对称弯曲深梁,为典型的非伯努利区构件,其承栽能力预计能较好地用国外近年来提出的“压杆-拉杆模型”进行模拟,但如何模拟这类特殊配筋构件,国内外未见先例。本文根据由试验得出的受力规律,尝试建立适用于这类构件受力特点的特殊压杆-拉杆模型。与试验结果的对比表明,这一宏观模型取得了较好模拟效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号