首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在构造和气候因素制约下的雅鲁藏布江的演化   总被引:8,自引:4,他引:8       下载免费PDF全文
雅鲁藏布江位于印度和欧亚大陆汇聚带内,其形成受到冈底斯山和喜马拉雅山差异性抬升的控制.冈底斯山抬升在先,发生在中生代晚期至新生代早期.一系列起源于冈底斯山和青藏高原的水系向南先是流入特提斯海,在特提斯海关闭后流入印度次大陆.喜马拉雅山构造抬升要晚于冈底斯山,大规模抬升发生在中新世早期,其抬升阻断了这些河流的通道,水流开始汇聚在这两个造山带之间,雅鲁藏布江由此形成.在雅鲁藏布江大拐弯地区,在海拔4 500 m处存在一个平坦的侵蚀面,并构成雅鲁藏布江大峡谷最高的一级谷肩,这表明雅鲁藏布江在下切前就在该面上流动,而且流速不大.在大拐弯以南,雅鲁藏布江的下游--布拉马普特拉河位于印度洋热带季风带内,其下切和溯源侵蚀速率很大.印度洋热带季风形成于6~9 MaB.P..因此,该河流很可能形成于该时期,要比雅鲁藏布江年轻,它在向北的溯源侵蚀的过程中袭夺了雅鲁藏布江,袭夺处可能就在大拐弯的北端,因此大拐弯是袭夺成因.  相似文献   

2.
王天武 《西藏地质》1996,(1):156-164
南迦巴瓦地区位于喜马拉雅山横断山和念青唐古拉山脉的交汇部位,地质构造十分复杂。根据区内的岩石共生组合、时空分布关系及大地构造环境的差异,可将区内变质岩类分为三个变质岩带,即喜马拉雅变质岩带、雅鲁藏布江变质岩带和冈底期变质岩带。  相似文献   

3.
刘行  邹灏  李阳  蒋修未  李蝶 《地质论评》2019,65(Z1):223-224
正拉琼锑金矿床位于措美县西约17 km,大地构造位于青藏高原南部的特提斯喜马拉雅构造带东段,地处于印度河—雅鲁藏布江缝合带(IYZS)与藏南拆离系(STDS)大断裂之间。由于印度板块与欧亚板块碰撞之后,导致印度洋持续扩张,造成印度大陆不断向北挤压,形成喜马拉雅造山带(尹安,2000),该地区近东西向的断裂自北而南依次  相似文献   

4.
通过时雅鲁藏布大峡谷流域地貌形成响应时间域的定量估算,大峡谷与上游河道特征的时比,以及大峡谷入口处河湖阶地的沉积分析和定年研究.结合构造研究的新进展和数值地貌分析成果,系统论证了雅鲁藏布大峡谷的形成。研究结果表明,现今的雅鲁藏布大峡谷与大峡谷上游的河道在大峡谷形成之前分属不同的河流体系,大约在距今30kaBP前后,原属于帕隆藏布江水系支流的扎曲一直白河段因溯源侵蚀,袭夺了位于现今直白河段上游的古雅鲁藏布江水系,使得此前向南经南伊沟(纳伊普曲)流出高原的古雅鲁藏布江与帕隆藏布江合二为一,雅鲁藏布大峡谷得以贯通和强烈的侵蚀下切,形成现今著名的大峡谷和大拐弯式样的流域结构。  相似文献   

5.
雅鲁藏布江大峡谷的形成   总被引:5,自引:0,他引:5  
通过时雅鲁藏布大峡谷流域地貌形成响应时间域的定量估算,大峡谷与上游河道特征的时比,以及大峡谷入口处河湖阶地的沉积分析和定年研究.结合构造研究的新进展和数值地貌分析成果,系统论证了雅鲁藏布大峡谷的形成。研究结果表明,现今的雅鲁藏布大峡谷与大峡谷上游的河道在大峡谷形成之前分属不同的河流体系,大约在距今30kaBP前后,原属于帕隆藏布江水系支流的扎曲一直白河段因溯源侵蚀,袭夺了位于现今直白河段上游的古雅鲁藏布江水系,使得此前向南经南伊沟(纳伊普曲)流出高原的古雅鲁藏布江与帕隆藏布江合二为一,雅鲁藏布大峡谷得以贯通和强烈的侵蚀下切,形成现今著名的大峡谷和大拐弯式样的流域结构。  相似文献   

6.
雅鲁藏布江是东构造结的核心区域,为研究雅鲁藏布江大拐弯流域现今隆升发育现状,本文基于ArcGIS平台,对雅鲁藏布江下游大拐弯流域的ASTER-DEM30 m面积-高程积分值(Hypsometry Index,简称HI法,是一种基于数字高程模型来获取流域演化特征及其构造活动响应指标的方法)进行计算,并结合构造、岩性、气候、第四系以及河流等基础资料探讨该地区隆升差异。结果表明:HI>0.43的隆升区主要集中在大拐弯缝合带以外的区域且分布与各断块中的三级夷平面具有较好的耦合性;而HI>0.60拉萨断隆隆升区分布范围最大,加拉白垒断隆分布最小,仅在大拐弯小范围分布;HI < 0.43的侵蚀下切区,处于河流的一二级谷肩位置以及河流发育较为成熟的区域;林芝-派镇段区域内HI < 0.35,以侵蚀下切为主。由以上得出:区内构造挤压作用依然存在,而气候、河流以及断裂带密度的影响是在构造背景下产生的,随着时间推移以上因素会逐渐抑制构造抬升作用,并且对侵蚀的促进作用在不同区域内表现不同;当构造作用发挥主要作用时,断块以隆升作用为主,HI>0.43;气候作用的影响使加拉白垒与南迦巴瓦峰处于隆升停滞,HI < 0.43;林芝段HI < 0.35说明在气候、河流发育以及断裂带密度的影响下会加大侵蚀的力度使得区域内以侵蚀下切为主,未有抬升迹象。整体上,在构造、气候、河流发育及断裂带密度综合影响下,隆升作用由雅鲁藏布江流域下游外部向内部逐渐减弱,而局部区域上的差异是由影响因素发挥作用的差异决定的。  相似文献   

7.
从大洋底部磁异常条带的宽度变化可以看出,大洋的扩张速率是时常变化的,这种变化与板块俯冲角度的变化一样,对板块汇聚带的应力和应变场有重要的控制作用。中国存在众多不同特征、不同年代的板块汇聚带,根据其中发生的构造作用可以反演汇聚带在板块扩张速率和俯冲角度控制下的演化。有着巨大高差的喜马拉雅山构造带和雅鲁藏布江缝合带在喜马拉雅山东、西构造结逐渐交汇在一起,其平均海拔高度随之增大而宽度不断变小。喜马拉雅山中段的推覆发生在中新世早期,在推覆的过程中,其北缘沿藏南拆离系还发生了大规模的南北向伸展。这表明在中新世前,在雅鲁藏布江缝合带和喜马拉雅山之间可能存在一个规模很大的造山带,在这里称之为喜马拉雅山—雅鲁藏布江造山带,它在中新世初发生了垮塌。作为这个造山带的前缘,喜马拉雅山中段发生向南的推覆,这就是喜马拉雅山中段的推覆时间要远远滞后于印度和欧亚大陆的碰撞时间的原因。造山带的垮塌可能是印度与欧亚大陆间水平汇聚速率的突然减小造成的。发生在古近纪的日本海和中国的松辽盆地的弧后扩张与喜马拉雅山—雅鲁藏布江造山带的重力垮塌作用可以对比,可能是太平洋和欧亚大陆汇聚速率的突然减小造成的。在白垩纪,太平洋和欧亚大陆汇聚速率很大,所以,欧亚大陆东缘,包括日本海和中国的松辽盆地,在当时可能是规模很大的造山带。位于秦岭南侧,上覆在四川盆地之上的大巴山推覆带的形成机制与喜马拉雅山在中新世的推覆成因类似,与晚白垩世—古近纪秦岭的垮塌有成因关联。秦岭的垮塌可能是华南—华北汇聚速率减小造成的,在此之前秦岭要比现今高得多。  相似文献   

8.
兰坪金顶地区推覆-滑动构造及其平衡剖面   总被引:3,自引:0,他引:3  
本文选择横切哀牢山隆起,经金沙江-红河大断裂,金顶铅锌矿区至澜苍江大断裂的剖面进行平衡.确认该剖面的构造样式为一喜马拉雅期的背负式对冲模式,即较老的J-T3地层分别从东西方向向兰坪盆地内部逆冲,可以分为东西两个推覆带.东推覆带发育较全,由根带、中带和前缘带组成.在推覆事件之后雪邦山隆起带迅速抬升,其西坡下有同生断裂活动,雪邦山隆起之上的推覆体转换成重力滑覆,由此形成了金顶矿区和莱龙、金-一带颇具特色的滑覆构造带.经平衡复位该剖面在以喜马拉雅构造期为主的阶段压缩了43km.本文为金顶起大型铅锌矿床形成的区域构造背景提供了新的认识.  相似文献   

9.
覃功炯  彭斯震 《现代地质》1994,8(2):177-186
本文选择横切哀牢山隆起,经金沙江-红河大断裂,金顶铅锌矿区至澜苍江大断裂的剖面进行平衡.确认该剖面的构造样式为一喜马拉雅期的背负式对冲模式,即较老的J-T3地层分别从东西方向向兰坪盆地内部逆冲,可以分为东西两个推覆带.东推覆带发育较全,由根带、中带和前缘带组成.在推覆事件之后雪邦山隆起带迅速抬升,其西坡下有同生断裂活动,雪邦山隆起之上的推覆体转换成重力滑覆,由此形成了金顶矿区和莱龙、金-一带颇具特色的滑覆构造带.经平衡复位该剖面在以喜马拉雅构造期为主的阶段压缩了43km.本文为金顶起大型铅锌矿床形成的区域构造背景提供了新的认识.  相似文献   

10.
雅鲁藏布江大拐弯地区河流形态特征及其意义   总被引:2,自引:0,他引:2  
为探讨雅鲁藏布江大拐弯地区区域隆升的特点,通过DEM(数字高程模型)和遥感影像提取雅鲁藏布江干流和帕隆藏布江的形态特征,引入Hack剖面、SL参数和Amos河宽理论模型进行分析。雅鲁藏布江干流在大渡卡以下河段的Hack剖面表现为上凸形态,SL参数升高、河流宽度减小,在藏布巴东瀑布-雅鲁藏布江大拐弯顶端段,SL参数达到最大值,河流宽度达到最小值;大拐弯顶端以下河段,SL参数减小,河流渐宽。帕隆藏布江古乡以下河段SL参数梯级增高,河流宽度总体收窄,大拐弯顶端附近达到最大值。综合2条河流的地貌特征和区域地质与地理背景,认为雅鲁藏布江大拐弯地区的隆升具有不均一性,雅鲁藏布江在大渡卡附近开始进入快速隆升区段,隆升最强烈的区段位于藏布巴东瀑布-大拐弯顶端段,大拐弯顶端之后雅鲁藏布江逐渐远离隆升中心区。  相似文献   

11.
在前人研究成果的基础上,划分出青藏高原及邻区上新世残留盆地共95个,探讨了青藏高原及邻区上新世构造岩相古地理演化。青藏高原上新世总体构造地貌格局主要受控于印度板块与欧亚板块沿雅鲁藏布江缝合带的碰撞及持续挤压,影响着青藏高原广大范围内的构造抬升。东北部昆仑山、祁连山地区是两大构造隆起蚀源区,两大山系夹持的柴达木盆地是高原东北部最大的陆内盆地,祁连山以北和以东地区则以盆山相间的格局接受周围山系的剥蚀物质,直到晚上新世(青藏运动"A"幕)高原东北部进一步强烈隆升,山间盆地抬升成为剥蚀区。新疆塔里木和青藏高原东部羌塘、可可西里地区主体表现为大面积的构造压陷湖盆-冲泛平原沉积区。高原东南部为一系列走滑拉分断裂运动形成的拉分盆地,上新世早期堆积洪冲积相砾岩,中期为湖泊、三角洲沉积,晚期随着山体的进一步抬升,盆地又接受冲洪积扇相砾岩堆积,并被河流侵蚀剥露。高原南部上新世多分布一些近南北向盆地,是响应高原隆升到一定程度垮塌而成的断陷盆地,同东南部拉分盆地类似,上新世沉积相也由早至晚分为3个阶段。恒河地区上新世由于喜马拉雅山的快速抬升,沉积以粗碎屑为主,形成狭长的西瓦利克群堆积。上新世青藏高原总体地势继承了中新世西高东低、南高北低的地貌特征,但地势高差明显较中新世增大。  相似文献   

12.
We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene–Eocene, Oligocene, Miocene, and Pliocene of the Qinghai–Tibet Plateau by compiling data regarding the type, tectonic setting, and lithostratigraphic sequence of 98 remnant basins in the plateau area. Our results can be summarized as follows. (1) The Paleocene to Eocene is characterized by uplift and erosion in the Songpan–Garzê and Gangdisê belts, depression (lakes and pluvial plains) in eastern Tarim, Qaidam, Qiangtang, and Hoh Xil, and the Neo-Tethys Sea in the western and southern Qinghai–Tibet Plateau. (2) The Oligocene is characterized by uplift in the Gangdisê–Himalaya and Karakorum regions (marked by the absence of sedimentation), fluvial transport (originating eastward and flowing westward) in the Brahmaputra region (marked by the deposition of Dazhuka conglomerate), uplift and erosion in western Kunlun and Songpan–Garzê, and depression (lakes) in the Tarim, Qaidam, Qiangtang, and Hoh Xil. The Oligocene is further characterized by depressional littoral and neritic basins in southwestern Tarim, with marine facies deposition ceasing at the end of the Oligocene. (3) For the Miocene, a widespread regional unconformity (ca. 23 Ma) in and adjacent to the plateau indicates comprehensive uplift of the plateau. This period is characterized by depressions (lakes) in the Tarim, Qaidam, Xining–Nanzhou, Qiangtang, and Hoh Xil. Lacustrine facies deposition expanded to peak in and adjacent to the plateau ca. 18–13 Ma, and north–south fault basins formed in southern Tibet ca. 13–10 Ma. All of these features indicate that the plateau uplifted to its peak and began to collapse. (4) Uplift and erosion occurred during the Pliocene in most parts of the plateau, except in the Hoh Xil–Qiangtang, Tarim, and Qaidam.  相似文献   

13.
印度板块与亚洲板块的碰撞使喜马拉雅-青藏高原隆升,地壳增厚和生长扩展。探测青藏高原深部结构,揭露两个大陆如何碰撞,碰撞如何使大陆变形的过程,是全球关切的科学奥秘。深地震反射剖面探测是打开这个科学奥秘的最有效途径之一。20多年来,运用这项高技术探测到青藏高原巨厚地壳的精细结构,攻克了难以得到下地壳和Moho清晰结构的技术瓶颈,揭露了陆陆碰撞过程。本文在探测研究成果基础上,从青藏高原南北-东西对比,再到高原腹地,系统地综述了青藏高原之下印度板块与亚洲板块碰撞-俯冲的深部行为。印度地壳在高原南缘俯冲在喜马拉雅造山带之下,亚洲板块的阿拉善地块岩石圈在北缘向祁连山下俯冲,祁连山地壳向外扩展,塔里木地块与高原西缘的西昆仑发生面对面的碰撞,在高原东缘发现龙日坝断裂而不是龙门山断裂是扬子板块的西缘边界,高原腹地Moho 薄而平坦,岩石圈伸展垮塌。多条深反射剖面揭露了在雅鲁藏布江缝合带下印度板块与亚洲板块碰撞的行为,印度地壳不仅沿雅鲁藏布江缝合带存在由西向东的俯冲角度变化,而且其向北行进到拉萨地体内部的位置也不同。在缝合带中部,显示印度地壳上地壳与下地壳拆离,上地壳向北仰冲,下地壳向北俯冲,并在俯冲过程发生物质的回返与构造叠置,使印度地壳减薄,喜马拉雅地壳加厚。俯冲印度地壳前缘与亚洲地壳碰撞后沉入地幔,处于亚洲板块前缘的冈底斯岩基与特提斯喜马拉雅近于直立碰撞,冈底斯下地壳呈部分熔融状态,近乎透明的弱反射和局部出现的亮点反射,以及近于平的Moho都反映出亚洲板块南缘的伸展构造环境。  相似文献   

14.
Detailed field investigations do not support the existence of a ‘Gangdese thrust’ along the Yarlung Tsangpo suture zone in southern Tibet. A relationship where Lhasa terrane rocks are thrust southwards over components of this zone was not observed over 2000 km of the suture. On the contrary, at the type locality of this ‘Gangdese thrust’, Miocene conglomerates unconformably overlie an eroded surface of Lhasa terrane rocks. Interpretations that invoke Late Oligocene – Early Miocene south‐directed thrusting on a ‘Gangdese thrust’ as a mechanism for uplift of the Tibetan Plateau must therefore be reassessed.  相似文献   

15.
The Himalayan range is one of the best documented continent-collisional belts and provides a natural laboratory for studying subduction processes. High-pressure and ultrahigh-pressure rocks with origins in a variety of protoliths occur in various settings: accretionary wedge, oceanic subduction zone, subducted continental margin and continental collisional zone. Ages and locations of these high-pressure and ultrahigh-pressure rocks along the Himalayan belt allow us to evaluate the evolution of this major convergent zone.

(1) Cretaceous (80–100 Ma) blueschists and possibly amphibolites in the Indus Tsangpo Suture zone represent an accretionary wedge developed during the northward subduction of the Tethys Ocean beneath the Asian margin. Their exhumation occurred during the subduction of the Tethys prior to the collision between the Indian and Asian continents.

(2) Eclogitic rocks with unknown age are reported at one location in the Indus Tsangpo Suture zone, east of the Nanga Parbat syntaxis. They may represent subducted Tethyan oceanic lithosphere.

(3) Ultrahigh-pressure rocks on both sides of the western syntaxis (Kaghan and Tso Morari massifs) formed during the early stage of subduction/exhumation of the Indian northern margin at the time of the Paleocene–Eocene boundary.

(4) Granulitized eclogites in the Lesser Himalaya Sequence in southern Tibet formed during the Paleogene underthrusting of the Indian margin beneath southern Tibet, and were exhumed in the Miocene.

These metamorphic rocks provide important constraints on the geometry and evolution of the India–Asia convergent zone during the closure of the Tethys Ocean. The timing of the ultrahigh-pressure metamorphism in the Tso Morari massif indicates that the initial contact between the Indian and Asian continents likely occurred in the western syntaxis at 57 ± 1 Ma. West of the western syntaxis, the Higher Himalayan Crystallines were thinned. Rocks equivalent to the Lesser Himalayan Sequence are present north of the Main Central Thrust. Moreover, the pressure metamorphism in the Kaghan massif in the western part of the syntaxis took place later, 7 m.y. after the metamorphism in the eastern part, suggesting that the geometry of the initial contact between the Indian and Asian continents was not linear. The northern edge of the Indian continent in the western part was 300 to 350 km farther south than the area east of the Nanga Parbat syntaxis. Such “en baionnette” geometry is probably produced by north-trending transform faults that initially formed during the Late Paleozoic to Cretaceous Gondwana rifting. Farther east in the southern Tibet, the collision occurred before 50.6 ± 0.2 Ma. Finally, high-pressure to ultrahigh-pressure rocks in the western Himalaya formed and exhumed in steep subduction compared to what is now shown in tomographic images and seismologic data.  相似文献   


16.
珠穆朗玛峰地区新构造运动   总被引:3,自引:0,他引:3       下载免费PDF全文
杨理华  刘东生 《地质科学》1974,9(3):209-220
这篇关于珠穆朗玛峰地区新构造运动的简要报导,是中国科学院西藏科学考察队1966-1968年科学考察成果的一部分。常承法、郑锡澜已经阐明了珠穆朗玛峰地区地质构造特征,我们则着重于讨论本区晚第三纪以来的新构造运动。探讨珠穆朗玛峰地区的新构造运动,实际上是对地球上最高大的高原和最年青的山脉近期活动性的研究。  相似文献   

17.
青藏高原东部及周边现时地壳运动   总被引:8,自引:2,他引:6       下载免费PDF全文
通过1991—2001年期间在青藏高原东部及周边地区的GPS测量,获得该地区不同参考框架下的地壳运动速度场,其测量的速度精度高于2mm/yr。印度板块与华北地块之间的地壳形变分为喜马拉雅及高原南部、高原中部(拉萨—格尔木)和高原北部(格尔木—金塔)三部分,它们分别吸收了印度板块与欧亚板块汇聚速率的43%、24%和32%。在欧亚框架下和相对于成都,印度板块和华南地块之间存在着以东喜马拉雅构造结为轴心的顺时针巨型涡旋构造——滇藏涡旋构造,运动速度分别为26~6mm/yr和24~7mm/yr,总体上从北东方向转变为南东和南西方向,有别于青藏高原中部的北东方向。滇藏涡旋和东喜马拉雅构造结的形成与南迦巴瓦—阿萨姆“犄角”的楔入作用有关。  相似文献   

18.
青藏高原东缘旋转变形机制的数值模拟   总被引:1,自引:0,他引:1  
在印度板块与欧亚板块的碰撞作用下,青藏高原受到华南块体、鄂尔多斯块体等不同程度的阻挡,引起高原的整体隆升。青藏高原东南缘发生物质向南"逃逸",青藏高原东缘现今的地壳运动表现为围绕青藏高原东构造结发生顺时针的旋转。针对青藏高原东缘的旋转变形特征,基于以大型活动断裂为界的块体构造模型,利用粘弹性接触单元有限元模拟,分析了控制青藏高原东缘旋转变形的动力学环境,模拟的GPS速度与实测GPS速度能够较好的地吻合,构造应力场分布特征和活动断层的性质也能够较大程度地吻合,模拟过程采用的边界及其代表的动力学环境表明,青藏高原东缘整体受控于印度板块的持续碰撞和稳定的华南板块的阻挡,在下地壳的拖曳和重力作用下,青藏高原物质从南部边界"逃逸"。在"逃逸"过程中,受印度板块斜向俯冲作用的影响,沿实皆断裂缅甸板块对巽他板块的剪切拉升作用是形成围绕喜马拉雅东构造结的旋转运动和地壳变形的重要因素,也是青藏高原东南缘旋转活动构造体系的主要影响因素之一。  相似文献   

19.
碰撞带前陆盆地的建立是大陆碰撞的直接标志和随后造山带构造变形的忠实记录。本文对欧亚板块与印度板块碰撞前后发育在拉萨地块上的冈底斯弧背前陆盆地,同碰撞产生的雅鲁藏布江周缘前陆盆地,以及碰撞后陆内变形产生的喜马拉雅前陆盆地的沉积地层演化以及碎屑锆石物源特征等进行了系统分析,结合前人及我们近些年的研究成果,认为冈底斯岛弧北侧发育一个典型的弧背前陆盆地系统而不是以前普遍接受的伸展盆地。除传统认为的喜马拉雅前陆盆地系统外,在碰撞造山带中还发育一个雅鲁藏布江前陆盆地系统,它是欧亚板块与印度板块碰撞以后,欧亚板块加载到印度被动大陆边缘产生的典型周缘前陆盆地。上述2个造山带前陆盆地系统的识别,大大提高了对新特提斯洋俯冲、碰撞过程的认识。造山带前陆盆地证据指示,新特提斯洋至少于140 Ma以前就已开始俯冲, 110 Ma俯冲速度开始提高,在65 Ma前后印度大陆与欧亚大陆发生碰撞,喜马拉雅山于40 Ma开始隆升,其剥蚀物质大量堆积在喜马拉雅前陆盆地中。  相似文献   

20.
Gangdese batholith in the southern Lhasa block is a key location for exploring the Tibetan Plateau uplift and exhumation history. We present the new low-temperature thermochronological data from two north–south traverses in the central Gangdese batholith to reveal their cooling histories and corresponding controls. Zircon fission track ages show prominent clusters ranging from 23.7 to 51.6 Ma, apatite fission track ages from 9.4 to 36.9 Ma, apatite (U–Th)/He ages between 9.5 and 12.3 Ma, and one zircon (U–Th)/He age around 77.8 Ma. These new data and thermal modeling, in combination with the regional geological data, suggest that the distinct parts of Gangdese batholith underwent different cooling histories resulted from various dynamic mechanisms. The Late Eocene–Early Oligocene exhumation of northern Gangdese batholith, coeval with the magmatic gap, might be triggered by crust thickening followed by the breakoff of Neotethyan slab, while this stage of exhumation in southern Gangdese batholith cannot be clearly elucidated probably because the most of plutonic rocks with the information of this cooling event were eroded away. Since then, the northern Gangdese batholith experienced a slow and stable exhumation, while the southern Gangdese batholith underwent two more stages of exhumation. The Late Oligocene–Early Miocene rapid cooling might be a response to denudation caused by the Gangdese Thrust or related to the regional uplift and exhumation in extensional background. By the early Miocene, the rapid exhumation was associated with localized river incision or intensification of Asian monsoon, or north–south normal fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号