首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This communication presents results of our 2-year survey on groundwater arsenic contamination in three districts Ballia, Varanasi and Gazipur of Uttar Pradesh (UP) in the upper and middle Ganga plain, India. Analyses of 4,780 tubewell water samples revealed that arsenic concentrations in 46.5% exceeded 10 microg/L, in 26.7%, 50 microg/L and in 10% 300 microg/L limits. Arsenic concentrations up to 3,192 microg//L were observed. The age of tubewells (n=1,881) ranged from less than a year to 32 years, with an average of 6.5 years. Our study shows that older tubewells had a greater chance of contamination. Depth of tubewells (n=3,810) varied from 6 to 60.5 m with a mean of 25.75 m. A detailed study in three administrative units within Ballia district, i.e. block, Gram Panchayet, and village was carried out to assess the magnitude of the contamination. Before our survey the affected villagers were not aware that they were suffering from arsenical toxicity through contaminated drinking water. A preliminary clinical examination in 11 affected villages (10 from Ballia and 1 from Gazipur district) revealed typical arsenical skin lesions ranging from melanosis, keratosis to Bowens (suspected). Out of 989 villagers (691 adults, and 298 children) screened, 137 (19.8%) of the adults and 17 (5.7%) of the children were diagnosed to have typical arsenical skin lesions. Arsenical neuropathy and adverse obstetric outcome were also observed, indicating severity of exposure. The range of arsenic concentrations in hair, nail and urine was 137-10,900, 764-19,700 microg/kg, and 23-4,030 microg/L, respectively. The urine, hair and nail concentrations of arsenic correlated significantly (r=0.76, 0.61, and 0.55, respectively) with drinking water arsenic concentrations. The similarity to previous studies on arsenic contamination in West Bengal, Bihar and Bangladesh indicates that people from a significant part of the surveyed areas in UP are suffering and this will spread unless drives to raise awareness of arsenic toxicity are undertaken and an arsenic safe water supply is immediately introduced.  相似文献   

2.
Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n = 187). The referent samples of both genders were also collected from the areas having low level of As (< 10 μg/L) in drinking water (n = 121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 μg/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 μg As/g for hair and < 0.5-4.2 μg/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R2 = 0.852 and 0.718) as compared to non-diseased subjects (R2 = 0.573 and 0.351), respectively.  相似文献   

3.
This study investigated the relationship between arsenic concentrations in drinking water in four towns/villages in eastern Croatia and corresponding hair arsenic concentrations of residents. The mean arsenic concentrations in community drinking water samples were 0.14, 37.88, 171.60, and 611.89 microg/l. The corresponding mean concentrations of the element in hair samples of subjects residing in each of the localities were 0.07 (n=11), 0.26 (n=17), 1.74 (n=11), and 4.31 microg/g (n=23). Chronic exposures to arsenic levels estimated in three investigated locations could present a serious health threat to around 3% of Croatian population.  相似文献   

4.
Although pump-well is the primary drinking water source in rural areas of China, there are still 8.4% of villages reliant on cold-spring. In this study, a survey of arsenic concentration in cold-springs and pump-wells was carried out in Hui County, Northwest China. A total of 352 drinking water samples, including 177 cold-springs and 175 pump-wells, were collected. The maximum arsenic concentrations in cold-springs and pump-wells were 0.482 mg/L and 0.067 mg/L, respectively. We found that 15.8% (28) of total cold-springs and 1.1% (2) of total pump-wells had arsenic concentrations exceeding the maximum allowable concentration of arsenic in drinking water of rural China (0.05 mg/L). Our findings show that 5 cold spring-contaminated villages are located in the mountainous areas of Hui County and 2224 inhabitants may be at risk of high arsenic exposure. This paper indicates that arsenic contamination of cold-springs may be more serious than expected in mountainous areas of Northwest China and extensive surveys and epidemiological studies should be carried out to investigate the potential contaminated areas and affected population.  相似文献   

5.
An investigation of arsenic, copper, nickel, manganese, zinc and selenium concentration in foodstuffs and drinking water, collected from 34 families and estimation of the average daily dietary intake were carried out in the arsenic-affected areas of the Jalangi and Domkal blocks, Murshidabad district, West Bengal where arsenic-contaminated groundwater (mean: 0.11 mg/l, n=34) is the main source for drinking. The shallow large diameter tubewells, installed for agricultural irrigation contain an appreciable amount of arsenic (mean: 0.094 mg/l, n=10). So some arsenic can be expected in the food chain and food cultivated in this area. Most of the individual food composites contain a considerable amount of arsenic. The mean arsenic levels in food categories are vegetables (20.9 and 21.2 microg/kg), cereals and bakery goods (130 and 179 microg/kg) and spices (133 and 202 microg/kg) for the Jalangi and Domkal blocks, respectively. For all other heavy metals, the observed mean concentration values are mostly in good agreement with the reported values around the world (except higher zinc in cereals). The provisional tolerable daily intake value of inorganic arsenic microg/kg body wt./day) is: for adult males (11.8 and 9.4); adult females (13.9 and 11); and children (15.3 and 12) in the Jalangi and Domkal blocks, respectively (according to FAO/WHO report, the value is 2.1 microg/kg body wt./day). According to WHO, intake of 1.0 mg of inorganic arsenic per day may give rise to skin lesions within a few years. The average daily dietary intake of copper, nickel and manganese is high, whereas for zinc, the value is low (for adult males: 8.34 and 10.2 mg/day; adult females: 8.26 and 10.3 mg/day; and children: 4.59 and 5.66 mg/day) in the Jalangi and Domkal blocks, respectively, compared to the recommended dietary allowance of zinc for adult males, adult females and children (15, 12 and 10 mg/day, respectively). The average daily dietary intake of selenium microg/kg body wt./day) is on the lower side for the children (1.07 and 1.22), comparable for the adult males (0.81 and 0.95) and slightly on the higher side for the adult females (1.08 and 1.26), compared to the recommended value (1.7 and 0.9 microg/kg body wt./day for infants and adults, respectively).  相似文献   

6.
Zhu C  Bai G  Liu X  Li Y 《Water research》2006,40(16):3015-3022
The objectives of this study were to screen high-fluoride and high-arsenic drinking waters, to evaluate the effectiveness of fluoride-reducing projects and to assess the present condition of endemic fluorosis and arsenism in Shaanxi province in western China. For screening high-fluoride drinking waters, five water samples were collected from each selected village where dental fluorosis patients were detected in 8-12 year-old children. For evaluating the effectiveness of fluoride-reducing projects, four water samples were collected from each project at end-user level. Fluoride concentrations in water samples were measured by fluoride-selective electrode method or spectrophotometry. Dental fluorosis in children aging 8-12 years was examined according to Horowitz's Tooth Surface Index of Fluorosis. Skeletal fluorosis in adults was detected clinically and radiologically according to Chinese Criteria of Clinical Diagnosis of Skeletal Fluorosis. For screening high-arsenic waters, 20 water samples were collected from each village which was selected from areas characterized by the geographic features to induce high-arsenic underground water, i.e., alluvial plains, ore mining or smelting areas, geothermal artesians, and thermal springs. Arsenic concentrations in water samples were determined by spectrophotometry or arsine generation atomic fluorospectrophotometry. Arsenism in adults aging 40-89 years was examined in villages with arsenic concentrations in drinking water above 0.05 mg/l according to Chinese Criteria for Classification of Endemic Arsenism Areas and Clinical Diagnoses of Endemic Arsenism. The results showed that the fluoride level of 7144 water samples was 1.17 +/- 0.93 mg/l. There were 3396 (47.6%) high-fluoride waters (fluoride level was above 1.0 mg/l) distributing in 786 (45.1%) villages, where about 0.8 million (50.0%) people inhabited. Additionally, the 1315 fluoride-reducing projects were studied. The fluoride level of the projects was 2.79 +/- 1.09 and 0.98 +/- 0.47 mg/l before and after building the projects, which remained at relatively lower level (1.03 +/- 0.47 mg/l). But there were still 58.0% of the projects providing drinking waters with fluoride concentrations beyond 1.0mg/l. The rates of dental fluorosis and skeletal fluorosis were 38.2% and 11.8%, respectively. The arsenic level of 1732 water samples was 0.010 +/- 0.082 mg/l. There were 174 (14.9%) high-arsenic waters (arsenic level was above 0.010 mg/l) being detected, distributing in 41 (38.7%) villages. The arsenic level in 53 (4.5%) water samples was beyond 0.025 mg/l. There were 3 villages with arsenic level in drinking water beyond Chinese National Permissible Limits (0.050 mg/l), and the prevalence rate of arsenism reached 37.0% in these three villages, 3.7%, 22.2%, and 11.1% of subjects suffering from mild, moderate, and severe arsenism, respectively. Conclusively, the wide distribution of high-fluoride drinking waters contributes to the prevalence of dental and skeletal fluorosis in Shaanxi province and the quality of fluoride-reducing projects should be further improved. Ore mining and smelting induces high-arsenic drinking waters, resulting in arsenism prevalence in Shang-luo city. Proper measures should be taken to deal with water pollution in the ore mining and smelting areas in order to solve the high-arsenic water problem in Shaanxi province.  相似文献   

7.
Since 1996, 52,202 water samples from hand tubewells were analyzed for arsenic (As) by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) from all 64 districts of Bangladesh; 27.2% and 42.1% of the tubewells had As above 50 and 10 μg/l, respectively; 7.5% contained As above 300 μg/l, the concentration predicting overt arsenical skin lesions. The groundwater of 50 districts contained As above the Bangladesh standard for As in drinking water (50 μg/l), and 59 districts had As above the WHO guideline value (10 μg/l). Water analyses from the four principal geomorphological regions of Bangladesh showed that hand tubewells of the Tableland and Hill tract regions are primarily free from As contamination, while the Flood plain and Deltaic region, including the Coastal region, are highly As-contaminated. Arsenic concentration was usually observed to decrease with increasing tubewell depth; however, 16% of tubewells deeper than 100 m, which is often considered to be a safe depth, contained As above 50 μg/l. In tubewells deeper than 350 m, As >50 μg/l has not been found. The estimated number of tubewells in 50 As-affected districts was 4.3 million. Based on the analysis of 52,202 hand tubewell water samples during the last 14 years, we estimate that around 36 million and 22 million people could be drinking As-contaminated water above 10 and 50 μg/l, respectively. However for roughly the last 5 years due to mitigation efforts by the government, non-governmental organizations and international aid agencies, many individuals living in these contaminated areas have been drinking As-safe water. From 50 contaminated districts with tubewell As concentrations >50 μg/l, 52% of sampled hand tubewells contained As <10 μg/l, and these tubewells could be utilized immediately as a source of safe water in these affected regions provided regular monitoring for temporal variation in As concentration. Even in the As-affected Flood plain, sampled tubewells from 22 thanas in 4 districts were almost entirely As-safe. In Bangladesh and West Bengal, India the crisis is not having too little water to satisfy our needs, it is the challenge of managing available water resources. The development of community-specific safe water sources coupled with local participation and education are required to slow the current effects of widespread As poisoning and to prevent this disaster from continuing to plague individuals in the future.  相似文献   

8.
Prevalence of skin lesions was investigated among 752 participants in eight villages in Kurdistan province in Iran with emphasis on total lifetime intake of arsenic from drinking water (TLIA). The participants were selected from eight villages with different exposure levels using a cluster-sampling technique. TLIA was calculated for each individual taking into account the type of water supply and their mean annual arsenic concentration. The study showed that 49 persons (6.5%) were suffering from hyperkeratosis and 20 persons (2.7%) from hyperpigmentation. The correlation between hyperkeratosis and hyperpigmentation was significant (R=0.325, p<0.01). Using the logistic regression model it was found that the relationship between TLIA and hyperkeratosis (OR=1.14, 95% CI=1.039-1.249), and hyperpigmentation (OR=1.254, 95% CI=1.112-1.416) was also significant. In conclusion, TLIA can be applied as a reliable indicator for the assessment of exposure.  相似文献   

9.
In this study, a survey has been conducted during 2005-2007 on surface and groundwater arsenic (As) contamination and its impact on the health of local population, of villages located on the banks of Manchar lake, southern part of Sindh, Pakistan. We have also assessed the relationship between arsenic exposure through respiratory disorders in male subjects with drinking water and smoking cigarettes made from tobacco grown in agricultural land irrigated with As contaminated lake water. The biological samples (blood and scalp hair) were collected from As exposed subjects (100% smokers) and age matched healthy male subjects (40.2% smoker and 59.8% non smokers) belong to unexposed areas for comparison purposes. The As concentration in drinking water (surface and underground water), agricultural soil, cigarette tobacco and biological samples were determined by electrothermal atomic absorption spectrometry. The range of As concentrations in lake water was 35.2-158 µg/L (average 97.5 µg/L), which is 3-15 folds higher than permissible limit of World Health Organization (WHO, 2004). While the As level in local cigarette tobacco was found to be 3-6 folds higher than branded cigarettes (0.37-0.79 µg/g). Arsenic exposed subjects (with and without RD) had significantly elevated levels of As in their biological samples as compared to referent male subject of unexposed area. These respiratory effects were more pronounced in individuals who had also As induced skin lesions. The linear regressions showed good correlations between As concentrations in water versus hair and blood samples of exposed subjects with and without respiratory problems.  相似文献   

10.
Recently, the maximum contaminate level (MCL) for arsenic was lowered to 10 microg/L in community water systems (CWS) throughout the United States. In this study, CWS in Oregon were assessed for the occurrence and magnitude of arsenic >10 microg/L between the effective and compliance dates for the new MCL. Ten CWS, with a combined population of 49,395, met the criteria for this study. Arsenic levels above the new MCL ranged from 11-25 microg/L. The demographic characteristics of these systems were queried and considered in the context of risk, exposure and outreach. A disproportionate percent of residents in affected CWS were of Hispanic origin (35%) compared to the statewide average (8%). Residents in these CWS had a lower median household income (20% less than the statewide average), a lower median age (32.5 vs. 36.3) and a higher percent of a second language spoken in the home besides English (34.6% vs. 12.1%) compared to the statewide census. These community characteristics have implications for exposure, risk and outreach associated with the occurrence of arsenic in drinking water. Consequently, demographic parameters are informative for risk management and communication and ultimately, beneficial to the affected public.  相似文献   

11.
The toxic and carcinogenic properties of inorganic and organic arsenic species make their determination in natural water vitally important. Determination of individual inorganic and organic arsenic species is critical because the toxicology, mobility, and adsorptivity vary substantially. Several methods for the speciation of arsenic in groundwater, surface-water, and acid mine drainage sample matrices using field and laboratory techniques are presented. The methods provide quantitative determination of arsenite [As(III)], arsenate [As(V)], monomethylarsonate (MMA), dimethylarsinate (DMA), and roxarsone in 2-8 min at detection limits of less than 1 microg arsenic per liter (microg As L(-1)). All the methods use anion exchange chromatography to separate the arsenic species and inductively coupled plasma-mass spectrometry as an arsenic-specific detector. Different methods were needed because some sample matrices did not have all arsenic species present or were incompatible with particular high-performance liquid chromatography (HPLC) mobile phases. The bias and variability of the methods were evaluated using total arsenic, As(III), As(V), DMA, and MMA results from more than 100 surface-water, groundwater, and acid mine drainage samples, and reference materials. Concentrations in test samples were as much as 13,000 microg As L(-1) for As(III) and 3700 microg As L(-1) for As(V). Methylated arsenic species were less than 100 microg As L(-1) and were found only in certain surface-water samples, and roxarsone was not detected in any of the water samples tested. The distribution of inorganic arsenic species in the test samples ranged from 0% to 90% As(III). Laboratory-speciation method variability for As(III), As(V), MMA, and DMA in reagent water at 0.5 microg As L(-1) was 8-13% (n=7). Field-speciation method variability for As(III) and As(V) at 1 microg As L(-1) in reagent water was 3-4% (n=3).  相似文献   

12.
Health effects associated with chronic, low-level exposures to arsenic in drinking water (<100 microg/L) remain unclear, in part due to uncertainties in assessing exposure. Drinking water concentrations have been used to assess past exposure to arsenic in epidemiological studies, under the assumption that a single measurement can be used to estimate historical exposure. This study aims to better understand (1) temporal variability in arsenic concentrations in drinking water and (2) the impact of point-of-use (POU) treatment devices on arsenic exposure measurements, and on reliability of the exposure measurement for population-level studies. Multiple drinking water samples were collected at two points in time (an average of fourteen months apart) for 261 individuals enrolled in a case-control study of arsenic exposure and bladder cancer in Michigan. Sources of drinking water included private wells (n = 221), public water supplies (n = 33), and bottled water (n = 7); mean arsenic concentration was highest in private wells (7.28 microg/L) and lowest in bottled water samples (0.28 microg/L). Arsenic concentrations in primary drinking water samples were highly correlated (r = 0.88, p < 0.0001, n = 196), with 3% of the water sources exceeding the United States Environmental Protection Agency's Maximum Contaminant Level (MCL) in one sample but not in the other sample. Measurement reproducibility did not vary by type of POU device (e.g., softener, filter, reverse osmosis system). Arsenic concentrations did differ, however, between samples treated with POU devices and untreated samples taken on the same day. Substantial differences in arsenic concentrations were consistently observed for reverse osmosis systems; other POU devices had variable effects on arsenic concentrations. These results indicate that while a single residential arsenic measurement may be used to represent exposure in this region, researchers must obtain information on changes in water source and POU treatment devices to better characterize population exposures over time.  相似文献   

13.
Large alluvial deltas of the Mekong River in southern Vietnam and Cambodia and the Red River in northern Vietnam have groundwaters that are exploited for drinking water by private tube-wells, which are of increasing demand since the mid-1990s. This paper presents an overview of groundwater arsenic pollution in the Mekong delta: arsenic concentrations ranged from 1-1610 microg/L in Cambodia (average 217 microg/L) and 1-845 microg/L in southern Vietnam (average 39 microg/L), respectively. It also evaluates the situation in Red River delta where groundwater arsenic concentrations vary from 1-3050 microg/L (average 159 microg/L). In addition to rural areas, the drinking water supply of the city of Hanoi has elevated arsenic concentrations. The sediments of 12-40 m deep cores from the Red River delta contain arsenic levels of 2-33 microg/g (average 7 microg/g, dry weight) and show a remarkable correlation with sediment-bound iron. In all three areas, the groundwater arsenic pollution seem to be of natural origin and caused by reductive dissolution of arsenic-bearing iron phases buried in aquifers. The population at risk of chronic arsenic poisoning is estimated to be 10 million in the Red River delta and 0.5-1 million in the Mekong delta. A subset of hair samples collected in Vietnam and Cambodia from residents drinking groundwater with arsenic levels >50 microg/L have a significantly higher arsenic content than control groups (<50 microg/L). Few cases of arsenic related health problems are recognized in the study areas compared to Bangladesh and West Bengal. This difference probably relates to arsenic contaminated tube-well water only being used substantially over the past 7 to 10 years in Vietnam and Cambodia. Because symptoms of chronic arsenic poisoning usually take more than 10 years to develop, the number of future arsenic related ailments in Cambodia and Vietnam is likely to increase. Early mitigation measures should be a high priority.  相似文献   

14.
Many Bangladeshi suffer from arsenic-related health concerns. Most mitigation activities focus on identifying contaminated wells and reducing the amount of arsenic ingested from well water. Food as a source of arsenic exposure has been recently documented. The objectives of this study were to measure the main types of arsenic in commonly consumed foods in Bangladesh and estimate the average daily intake (ADI) of arsenic from food and water. Total, organic and inorganic, arsenic were measured in drinking water and in cooked rice and vegetables from Bangladeshi households. The mean total arsenic level in 46 rice samples was 358 microg/kg (range: 46 to 1,110 microg/kg dry weight) and 333 microg/kg (range: 19 to 2,334 microg/kg dry weight) in 39 vegetable samples. Inorganic arsenic calculated as arsenite and arsenate made up 87% of the total arsenic measured in rice, and 96% of the total arsenic in vegetables. Total arsenic in water ranged from 200 to 500 microg/L. Using individual, self-reported data on daily consumption of rice and drinking water the total arsenic ADI was 1,176 microg (range: 419 to 2,053 microg), 14% attributable to inorganic arsenic in cooked rice. The ADI is a conservative estimate; vegetable arsenic was not included due to limitations in self-reported daily consumption amounts. Given the arsenic levels measured in food and water and consumption of these items, cooked rice and vegetables are a substantial exposure pathway for inorganic arsenic. Intervention strategies must consider all sources of dietary arsenic intake.  相似文献   

15.
Chronic arsenic exposure and skin lesions (keratosis and hyperpigmentation) are inextricably linked. This paper was to quantify the children skin lesions risks and to further recommend safe drinking water arsenic standard based on reported arsenic epidemiological data. We linked the Weibull dose-response function and a physiologically based pharmacokinetic (PBPK) model to estimate safe drinking water arsenic concentrations and to perform the risk characterization. We calculated odds ratios (ORs) to assess the relative magnitude of the effect of the arsenic exposure on the likelihood of the prevalence of children skin lesions by calculating proposed Weibull-based prevalence ratios of exposed to control groups associated with the age group-specific PBPK model predicted dimethylarsinite (MMA(III)) levels in urine. Positive relationships between arsenic exposures and cumulative prevalence ratios of skin lesions were found using Weibull dose-response model (r2=0.91-0.96). We reported that the safe drinking water arsenic standards were recommended to be 2.2 and 1 microg/L for male and 6 and 2.8 microg/L for female in 0-6 and 7-18 years age groups, respectively, based on hyperpigmentation with an excess risk of 10(-3) for a 75 years lifetime exposure. Risk predictions indicate that estimated ORs have 95% confidence intervals of 1.33-5.12, 1.74-19.15, and 2.81-19.27 based on mean drinking water arsenic contents of 283.19, 282.65, and 468.81 microg/L, respectively, in West Bengal, India, Bangladesh, and southwestern Taiwan. Our findings also suggest that increasing urinary monomethylarsonic acid (MMA) levels are associated with an increase in risks of arsenic-induced children skin lesions.  相似文献   

16.
In Bangladesh and the neighboring state of West Bengal, India, over 100 million people are affected by widespread arsenic poisoning through drinking water drawn from underground sources containing arsenic at concentrations well above the permissible limit of 50 μg/L. The health effects caused by arsenic poisoning in this area is as catastrophic as any other natural calamity that occurred throughout the world in recent times. Since 1997, over 200 community level arsenic removal units have been installed in Indian subcontinent through collaboration between Bengal Engineering and Science University (BESU), India and Lehigh University, USA. Approximately 200,000 villagers collect arsenic-safe potable water from these units on a daily basis. The treated water is also safe for drinking with regard to its total dissolved solids, hardness, iron and manganese content. The units use regenerable arsenic-selective adsorbents. Regular maintenance and upkeep of the units is administered by the villagers through formation of villagers’ water committee. The villagers contribute towards the cost of operation through collection of a small water tariff. Upon exhaustion, the adsorbents are regenerated in a central facility by a few trained villagers. The process of regeneration reduces the volume of disposable arsenic-laden solids by nearly two orders of magnitude and allows for the reuse of the adsorbent material. Finally, the arsenic-laden solids are contained on well-aerated coarse sand filters with minimum arsenic leaching. This disposal technique is scientifically more appropriate than dumping arsenic-loaded adsorbents in the reducing environment of landfills as currently practiced in developed countries including the United States. The design of the units underwent several modifications over last ten years to enhance the efficiency in terms of arsenic removal, ease of maintenance and ecologically safe containment and disposal of treatment residuals. The continued safe operation of these units has amply demonstrated that use of regenerable arsenic-selective adsorbents is quite viable in remote locations. The technology and associated socio-economic management of the units have matured over the years, generating promise for rapid replication in other severely arsenic-affected countries in Southeast Asia.  相似文献   

17.
The health implications of the consumption of high arsenic groundwater in Bangladesh and West Bengal are well-documented, however, little is known about the level of arsenic exposure elsewhere in Southeast Asia, where widespread exploitation of groundwater resources is less well established. We measured the arsenic concentrations of nail and hair samples collected from residents of Kandal province, Cambodia, an area recently identified to host arsenic-rich groundwaters, in order to evaluate the extent of arsenic exposure. Nail and hair arsenic concentrations ranged from 0.20 to 6.50 microg g(-1) (n=70) and 0.10 to 7.95 microg g(-1) (n=40), respectively, in many cases exceeding typical baseline levels. The arsenic content of the groundwater used for drinking water purposes (0.21-943 microg L(-1) (n=31)) was positively correlated with both nail (r=0.74, p<0.0001) and hair (r=0.86, p<0.0001) arsenic concentrations. In addition, the nail and hair samples collected from inhabitants using groundwater that exceeded the Cambodian drinking water legal limit of 50 microg L(-1) arsenic contained significantly more arsenic than those of individuals using groundwater containing <50 microg L(-1) arsenic. X-ray absorption near edge structure (XANES) spectroscopy suggested that sulfur-coordinated arsenic was the dominant species in the bulk of the samples analysed, with additional varying degrees of As(III)-O character. Tentative linear least squares fitting of the XANES data pointed towards differences in the pattern of arsenic speciation between the nail and hair samples analysed, however, mismatches in sample and standard absorption peak intensity prevented us from unambiguously determining the arsenic species distribution. The good correlation with the groundwater arsenic concentration, allied with the relative ease of sampling such tissues, indicate that the arsenic content of hair and nail samples may be used as an effective biomarker of arsenic intake in this relatively recently exposed population.  相似文献   

18.
First, we determined the levels of 8 trace elements (As, Se, Hg, Cd, Ag, Mn, Cr and Pb) in 530 village drinking water sources by graphite furnace or flame atomic absorption spectroscopy method, in Kurdistan Province in the west of Iran. The results showed that the level of As, Cd and Se in 28 village drinking water sources exceeded WHO or National Standard limits. The levels of concentration of arsenic in drinking water ranged from 42 to 1500 μg/L. Then in a cross-sectional survey, 587 people from 211 households were chosen for clinical examinations of multi-chronic arsenical poisoning including pigment disorders, keratosis of palms and soles, Mee's line in fingers and nails and the gangrene as a systemic manifestation. Of 587 participants, 180 (30.7%) participants were affected by representing the type of chronic arsenical poisoning. The prevalence of Mee's line, keratosis, and pigment disorders were 86.1%, 77.2% and 67.8% respectively. Therefore, the prevalence of Mee's line between inhabitants was higher than the other disorders. The results show a strong linear relationship between arsenic exposure and occurrence of multi-chronic arsenical poisoning (R2 = 0.76). The association between age for more than 40 years and gender for more than 60 years with chronic arsenical poisoning is significant (p < 0.05). Also, there is a relationship between subjects who were affected with disorders and duration of living in the village. Except for gangrene disorder, the odds ratio of prevalence of other disorders with arsenic exposure level in drinking water show a highly significant relationship between arsenic content and the risk of chronic disorders (p < 0.01). These results confirm the need to further study trace elements in drinking waters, food products and other samples in this area and the relationship to other chronic diseases arising out of arsenicosis.  相似文献   

19.
Performance of nanofiltration for arsenic removal   总被引:19,自引:0,他引:19  
Sato Y  Kang M  Kamei T  Magara Y 《Water research》2002,36(13):3371-3377
Performance of rapid sand filtration inter-chlorination system was compared with nanofiltration (NF) to reduce the arsenic health risk of drinking water. It was found that rapid sand filtration with inter-chlorination is not effective in removing arsenic. If total arsenic concentration in raw water is below 50 microg/L regardless of the turbidity of raw water, arsenic can be removed below WHO guideline value of 10 microg/L by conventional coagulation (polyaluminum chloride dosage is about 1.5 mg Al/L). However, if the raw water arsenic concentration exceeds 50 microg/L, more coagulant dosage or enhanced coagulation is needed. To adopt optimum coagulant dosage for arsenic removal, it needs to monitor raw water arsenic concentration, but it is difficult because arsenic measurement is time consuming. In addition, if raw water contains As(III), it is difficult for rapid sand filtration inter-chlorination system to meet an arsenic maximum contaminant level of 2 microg/L, which would achieve reduction of cancer risk below 10(-4). On the other hand, the NF membrane (NaCl rejection 99.6%) could remove over 95% of As(V) under relatively low-applied pressure (< 1.1 MPa). Furthermore, more than 75% of As(III) could be removed using this membrane without any chemical additives, while trivalent arsenic could not be removed by rapid sand filtration system without pre-oxidation of As(III) to As(V). Because both As(V) and As(III) removals by NF membranes were not affected by source water composition, it is suggested that NF membrane can be used in any types of waters.  相似文献   

20.
Rice is the staple food for the people of arsenic endemic South (S) and South-East (SE) Asian countries. In this region, arsenic contaminated groundwater has been used not only for drinking and cooking purposes but also for rice cultivation during dry season. Irrigation of arsenic-contaminated groundwater for rice cultivation has resulted high deposition of arsenic in topsoil and uptake in rice grain posing a serious threat to the sustainable agriculture in this region. In addition, cooking rice with arsenic-contaminated water also increases arsenic burden in cooked rice. Inorganic arsenic is the main species of S and SE Asian rice (80 to 91% of the total arsenic), and the concentration of this toxic species is increased in cooked rice from inorganic arsenic-rich cooking water. The people of Bangladesh and West Bengal (India), the arsenic hot spots in the world, eat an average of 450 g rice a day. Therefore, in addition to drinking water, dietary intake of arsenic from rice is supposed to be another potential source of exposure, and to be a new disaster for the population of S and SE Asian countries. Arsenic speciation in raw and cooked rice, its bioavailability and the possible health hazard of inorganic arsenic in rice for the population of S and SE Asia have been discussed in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号