首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 54 毫秒
1.
为了研究高速列车的头形对列车整车的气动性能有着重要的影响,对一节半车编组列车分别进行了空气动力学仿真分析和风洞试验.采用有限体积法对列车头部周围流场进行区域离散,进行气动性能仿真分析,得到高速列车头车的气动特性参数.在满足几何相似的基础上,对一节半编组的列车模型进行风洞试验,获取头部的气动参数,并从模拟仿真分析结果与风洞试验结果对比分析中验证,两种方法能够相互补充,相互印证,为高速列车头形的研究总结出有效的研究途径.  相似文献   

2.
介绍了以东风11型内燃机车牵引的准高速列车风洞模型试验,包括以韶山型电力机车作牵引的对比试验。分别对4种列车牵引编组方案进行了气动阻力,列车表面压力及列车会车时的空气压力测量,于不同工况下共测得数据180组。在对测试结果进行分析研究的基础上,对其空气动力性能作了客观评价并对存在问题提出了建议。  相似文献   

3.
采用低温风洞试验对比了中国高速列车HST、法国高速列车TGV和德国高速列车ICE3的气动性能; 基于EN 14067和TSI标准在铝质材料模型上测试了不同侧偏角下列车阻力、升力和倾覆力矩; 利用粒子图像测速技术测量了列车周围流场, 得到了高速列车与空气的相互作用机理和气动现象; 采用计算流体力学方法模拟了高速列车实际运行情况, 并与低温风洞试验流场测试结果进行了对比。研究结果表明: 0°~10°侧偏角下列车阻力系数绝对值从大到小依次为HST、ICE3、TGV, 侧偏角为0°时, 3种列车的阻力系数分别为0.223、0.166、0.140;0°~5°侧偏角下列车升力系数绝对值从大到小依次为TGV、ICE3、HST, 且数值均接近0, 其中ICE3、HST为正升力, 列车受压向轨面力, TGV为负升力, 列车受上浮力; 0°~5°侧偏角下列车倾覆力矩系数绝对值从大到小依次为TGV、HST、ICE3, 侧偏角为0°时, 3种列车倾覆力矩系数分别为0.021、0.019、0.011;HST高速列车由于头部双层造型设计, 在头部曲面过渡处出现流动分离, 增大了列车摩擦阻力和压差阻力, 导致列车阻力系数比TGV和ICE3偏大一些, 但阻力系数在高速列车头型设计技术要求限值0.25之内, 且升力和倾覆力矩性能较好, 列车具有良好的稳定性, 满足高速列车头型气动设计的工程需求。  相似文献   

4.
列车气动阻力问题的实验研究   总被引:2,自引:0,他引:2  
通过水槽的列车模型试验探讨列车气动阻力特性,讨论列车车型以气动阻力的影响,并得知流线型化的列车阻力系数可减少63.2%。  相似文献   

5.
研究了中国高速列车气动减阻优化进展,总结了典型部件的压力分布特性与各部件在列车气动阻力中的贡献占比,评析了惰行试验、风洞试验与数值模拟3种列车气动阻力研究方法,论述了和谐号、复兴号等系列列车头型气动性能的差异,阐述了高速列车头型气动减阻优化方法与技术,梳理了转向架区域、车端连接处、受电弓及导流罩等局部不平顺区域的气动减阻措施,归纳了适用于高速列车的前沿减阻技术。研究结果表明:数值模拟和风洞试验各有优缺点,经过风洞试验有效验证的数值模拟是准确计算列车气动阻力的有效途径; 列车气动阻力中贡献占比的主要部件为头车、尾车、转向架、受电弓与车端连接处; 由于现有高速列车的高度流线化,头型优化较难实现大幅度的减阻,改善转向架区域裙板、设计全包外风挡与优化受电弓和导流罩外形是进一步减阻的有效措施; 减阻降噪、提升运行平稳性和舒适性等多目标优化是列车头型设计的发展趋势,通过直接寻优计算或者代理模型寻优计算能够提高优化效率与降低优化设计成本; 未来应重点研究高速列车的仿生表面微结构、吹吸气流动控制、等离子体减阻与涡流发生器减阻技术,实现中国高速列车的绿色、节能、高速化发展。  相似文献   

6.
通过Actran建立某高速列车1∶8缩尺比例的三辆编组的列车气动噪声CFD/CAA混合数值分析模型,模拟列车在250 km/h运行速度下外气动湍流噪声,分析结果表明,车外气动噪声在车头、受电弓、转向架处较大,且主要集中在500~2 000 Hz频率范围内.并将仿真分析结果与相应1∶8缩尺比例的列车模型在声学风洞中的气动噪声试验结果数据进行对比分析,仿真数据与试验数据基本吻合,仿真分析结果可以为新车型设计与改进提供可靠的数据.  相似文献   

7.
为研究高速列车受电弓流线型结构对受电弓气动特性的影响,基于计算流体力学理论,构建某型号高速列车4车编组模型.采用k-ωSST湍流模型进行数值模拟,分析得到流线型结构对受电弓的气动特性及流场的影响.计算结果表明:流线型受电弓减小了滞止区面积和迎风面积,并减缓了受电弓尾部涡流,从而有效降低了受电弓受到的压差阻力,相较于现役...  相似文献   

8.
为研究高速列车在运营过程中的气动特性, 分析其气动特性变化机理, 设计了2种高速列车-桥梁系统的气动特性风洞试验方案; 开发并建立了适用于在风洞中的高速列车-桥梁系统试验方法与系统; 试验系统分为运动系统与数采系统2个部分; 运动系统基于惯性驱动原理, 以高速伺服电机为驱动力, 通过高强度旋转传送带将缩尺比为1∶8~1∶30的移动车辆模型在风洞中以最高速度50 m·s-1模拟真实运行环境中运行; 在运动系统的搭载下, 自主研发了一套数采系统, 并在风洞实验室中对有无横风作用下的列车进行了气动特性测试。分析结果表明: 试验方法与系统适用于加减速距离短、瞬时加速度大的试验场景, 且不受车辆外形与基础设施的限制, 可降低设计成本, 提高试验的安全与稳定性; 标准误差与平均值之比均不大于10%, 表明数采系统测试的车辆气动特性有较好的平稳性和可重复性, 能够精准得到列车在不同试验条件下的气动特性; 通过对比有无横风作用下的列车气动特性, 得到列车速度对车辆的气动特性影响极其重要; 列车高速移动时, 其因速度产生的气动影响远远大于横风, 且表面测点平均风压系数最大值可达-10, 反映了静态模型的试验方式不能够满足模拟列车高速运行时气动特性状态。  相似文献   

9.
建立了高速列车组包括头车、中间车、尾车及外部空间在内的气动噪声计算物理模型,从声学理论出发,结合列车实际运行的边界条件,运用以稳态结果作为初始值进行瞬态计算,预测了高速列车气动噪声,并对采用直接瞬态法计算气动噪声的可行性进行了分析计算.研究结果表明气动噪声分布于很宽的频带内,无明显的主频,属于宽频噪声.在低频中气动噪声...  相似文献   

10.
根据近年来高速列车气动噪声相关研究,从试验研究、理论分析和数值模拟方面介绍了当前高速列车气动噪声研究现状和研究成果, 分析了高速列车气动噪声源分布和产生机理,探讨了高速列车关键区域气动噪声降噪措施,展望了未来研究方向。研究结果表明:高速列车运行产生的气动噪声主要声源为几何体表面偶极子声源,分布在转向架、受电弓、车厢连接处、头车与尾车等区域;转向架区域存在着车体表面结构不连续性,气流流经时产生流动分离和流体相互作用,形成较强气动噪声源,可以采用转向架舱外设置裙板和舱内壁与周围铺设吸声板等措施进行降噪;受电弓各部件受到流动冲击作用,产生周期性涡旋脱落诱发的单音噪声,可通过减少受电弓结构部件、改变受电弓杆件截面形状、安装受电弓导流罩、受电弓两侧设置隔声板和射流控制等措施进行气动噪声有效控制;无封闭式车厢风挡形成开放式环形空腔,气流流经时产生较强的气动噪声和气动声学耦合,采用全封闭风挡可有效降低气动噪声产生;头车部位气流流动分离以及尾车部位由于尾涡脱落和非定常流动结构形成与发展,诱发气动噪声产生,头车、车身与尾车减少突出部件,保持几何体表面光滑和连续性,有利于取得较好的降噪效果;随着未来更高速度级高速列车研发,有必要进一步深入研究高速列车气动噪声理论与数值模拟方法,提升气动噪声降噪技术水平,有效控制气动噪声。  相似文献   

11.
本文利用作者博士研究生期间提出的三维钝体湍流绕流数值计算方法和计算程序,在国内首次对高速列车头型及车体横截面优化进行数值模拟研究,了解流线型头型各几何参数与形阻关系以及横截面各几何参数对横风下列车稳定性、安全性的影响。为京沪线高速列车推荐出综合考虑气动阻力、压力波特性的最佳头型,计算结果与西南交通大学XNJD-1风洞试验结果吻合很好。  相似文献   

12.
基于连续性方程Reynolds时均Navier-Stokes方程以及RNG k-ε湍动能模型方程对都市快轨列车隧道运行的空气动力流场进行数值计算.研究在以160 km/h隧道运行速度分别通过圆形和矩形隧道的工况下,从列车进入隧道直至整车完全驶出隧道的空气阻力以及车体表面压力变化情况,并对圆形及矩形隧道流场特性进行对比.计算结果表明:列车在矩形隧道和圆形隧道运行过程中的最大阻力分别达到15 458.5 N和13 829.3 N,最大表面压力分别达到4252.3 Pa和3 815.8 Pa.在两种隧道中运行的列车阻力变化规律及列车表面压力变化规律相同,矩形隧道运行时列车的最大阻力与圆形隧道相比增加了14.3%,表面最大压力增加了l3.8%.  相似文献   

13.
高速列车作用在跨线天桥上风压力的数值模拟   总被引:1,自引:0,他引:1  
列车风载是临近高速铁路建筑物设计和确定相关建筑限界必须考虑的重要问题,采用三维不可压缩势流模型和而元法,对高速列车通过时作用在跨线天桥表面上的气压动力进行了数值计算,结果表明,高速列车通过时一天桥表面受空气压力波的作用,压力系数的波动范围为-0.135~0.095,文中分析了跨线天桥上压力的分布的基本特征。  相似文献   

14.
高速铁路隧道压力波数值分析   总被引:18,自引:3,他引:18  
本文根据一维、可压缩、不等熵非定常流体流动理论并利用特征线法发展了高速列车驶人隧道引起隧道内空气压力瞬变的数值模拟方法,并根据该方法初步探讨了喇叭口型隧道减缓压力波的效果。计算结果表明,该方法可作为我国高速铁路隧道设计参数选择的研究工具。隧道设置喇叭状洞口作为减缓压力波的措施是可行的。  相似文献   

15.
采用数值方法对高速列车在带疏散通道的隧道内列车风时程变化规律和空间分布特征进行了研究.结果表明,测点处列车风的风速在车头与车尾经过时变化较剧烈,隧道纵向列车风最大值出现在列车完全进入隧道后的时段,且车头、车尾附近的列车风以横向风为主.隧道内会车时,列车风的时程变化规律与单车运行情况下基本相同,由于列车风反向叠加,两车之间的列车风风速很小,且在在隧道内呈中心对称分布.近列车疏散通道内纵向列车风变化规律与隧道中线附近的列车风基本相似,而远列车侧疏散通道内纵向列车风风速变化相对缓和.  相似文献   

16.
为考虑侧向风作用下车辆运动对车-桥系统气动特性的影响,针对车-桥系统气动绕流的特点,研制了一套移动车辆模型风洞试验系统,在风洞中实现了侧向风作用下车辆运动过程中桥梁和车辆各自气动力的同步测试.该系统可以较方便地改变来流风速、车辆运动速度、测试对象以及车辆与桥梁的相对位置等.根据测试信号时程的特点,提出了相应的数据处理方法,分析了车辆运动过程中桥梁和车辆动态气动力的变化特征.试验结果表明,桥梁和车辆的气动力信号较稳定,试验结果比较可靠.  相似文献   

17.
为考虑侧向风作用下车辆运动对车-桥系统气动特性的影响,基于研制的移动车辆模型风洞试验系统,针对轨道交通车辆和公路交通车辆,分别采用三车模型和单车模型,测试了不同工况下车辆、桥梁的气动力系数,讨论了车速、风向角、车辆在桥上所处轨道位置以及车辆类型等因素对车辆和桥梁气动特性的影响.研究表明,随着车速的增大和合成风向角的减小,车辆阻力系数和升力系数存在增大的趋势,车速对单车模型气动力系数的影响更显著;车辆在桥上所处轨道位置不同对车辆、桥梁气动力系数的影响均较大,桥梁气动力系数对车速和合成风向角不敏感.  相似文献   

18.
风轮是风力发电机利用风能的核心部件,而翼型作为风轮的关键零件,其结构参数的选择的不同会对风力机性能造成极大的影响。本文选取3种常用的H型垂直轴风力机NACA系列对称翼型的绕流流动,建立其湍流流场的模型,采用移动网格技术对其进行数值分析与计算,得出风轮的力矩系数、功率及风能利用率的变化规律,在此基础上,详细分析了不同的对称翼型对垂直轴风力机风轮气动性能的影响。根据其气动性能曲线,拟合出给定工况下,风能利用率随尖速比的变化公式,更好的实现定量分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号