首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, we have investigated the dynamics of non-static Gödel type rotating universe with massive scalar field, viscous fluid and heat flow in the presence of cosmological constant. For various cosmic matter forms, the behavior of the cosmological constant (Λ), shear (η) and bulk (ξ) viscosity coefficients and other kinematic quantities have studied in the early universe. We have showed the decay of massive scalar field in the non-static rotating Gödel type universe and we have obtained constant scalar field with and without source density. Also, we have investigated the effects of massive scalar field on the matter density and pressure. From solutions of the field equations, we have a cosmological model with non-zero expansion, shear, heat flux and rotation. Also some physical and geometrical aspects of the model discussed.  相似文献   

2.
Astronomical data in favor of cosmological acceleration and possible explanations of accelerated expansion of the universe are discussed. Main attention is paid to gravity modifications at small curvature which could induce accelerated cosmological expansion. It is shown that gravitating systems with mass density rising with time evolve to a singular state with infinite curvature scalar. The universe evolution during the radiation-dominated epoch is studied in the R 2-extended gravity theory. Particle production rate by the oscillating curvature and the back reaction of particle production on the evolution of R are calculated in one-loop approximation. Possible implications of the model for cosmological creation of non-thermal dark matter are discussed.  相似文献   

3.
This Letter presents an exact analytic solution of a simple cosmological model in presence of both nonrelativistic matter and scalar field where Einstein's cosmological constant Λ appears as an integration constant. Unlike Einstein's cosmological constant ascribed to vacuum energy, the dark energy density and the energy density of the ordinary matter decrease at the same rate during the expansion of the universe. Therefore the model is free of the coincidence problem. Comparing the predictions using this model with the current cosmological observations shows that the results are consistent.  相似文献   

4.
Here, we consider interacting viscous modified Chaplygin gas in presence of cosmological constant. We assumed bulk viscosity as a function of density. We consider interaction between modified Chaplygin gas and baryonic matter. Then, the effects of viscosities on the cosmological parameters such as energy, density, Hubble expansion parameter, scale factor and deceleration parameter investigated. This model may be considered as a toy model of our universe.  相似文献   

5.
Plane symmetric viscous fluid cosmological models of the universe with a variable cosmological term are investigated. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of mass density whereas the coefficient of shear viscosity is to be proportional to rate of expansion in the model. We have also obtained a special model in which the shear viscosity is assumed to be zero. The cosmological constant Λ is found to be a decreasing function of time and a positive which is supported by results from recent supernovae Ia observations. Some physical and geometric properties of the models are also discussed.  相似文献   

6.
Among the several proposals to solve the incompatibility between the observed small value of the cosmological constant and the huge value obtained by quantum field theories, we can find the idea of a decaying vacuum energy density, leading from high values at early times of universe evolution to the small value observed nowadays. In this paper we consider a variation law for the vacuum density recently proposed by Schützhold on the basis of quantum field estimations in the curved, expanding background, characterized by a vacuum density proportional to the Hubble parameter. We show that, in the context of an isotropic and homogeneous, spatially flat model, the corresponding solutions retain the well established features of the standard cosmology, and, in addition, are in accordance with the observed cosmological parameters. Our scenario presents an initial phase dominated by radiation, followed by a dust era long enough to permit structure formation, and by an epoch dominated by the cosmological term, which tends asymptotically to a de Sitter universe. Taking the matter density equals to half of the vacuum energy density, as suggested by observation, we obtain a universe age given by Ht = 1.1, and a decelerating parameter equals to −1/2.  相似文献   

7.
This Letter is a study of the effects of higher dimensional gravity and Brans–Dicke (BD) scalar field on cosmic acceleration in 5-D BD cosmological model. We assume a flat cosmological model in which the matter content of the universe is either cold dark matter or radiation. In a framework to study attractor solutions in the phase space we simultaneously constrain the model parameters with the observational data for distance modulus. The phase space analysis illustrates that the universe begins from an unstable state in the past and eventually reaches an asymptotically stable state (attractor). We examine the model by performing Hubble parameter test in addition to statefinder diagnosis. We also reconstruct the equation of state parameter, the scale factor in 3-D space and along extra dimension. The results show that due to the presence of extra dimension and Brans–Dicke scalar field in the model, the universe undergoes a period of acceleration.  相似文献   

8.
A. Tawfik 《Annalen der Physik》2011,523(5):423-434
The evolution of a flat, isotropic and homogeneous universe is studied. The background geometry in the early phases of the universe is conjectured to be filled with causal bulk viscous fluid and dark energy. The energy density relations obtained from the assumption of covariant conservation of energy‐momentum tensor of the background matter in the early universe are used to derive the basic equation for the Hubble parameter H. The viscous properties described by ultra‐relativistic equations of state and bulk viscosity taken from recent heavy‐ion collisions and lattice QCD calculations have been utilized to give an approximate solution of the field equations. The cosmological constant is conjectured to be related to the energy density of the vacuum. In this treatment, there is a clear evidence for singularity at vanishing cosmic time t indicating the dominant contribution from the dark energy. The time evolution of H seems to last for much longer time than the ideal case, where both cosmological constant and viscosity coefficient are entirely vanishing.  相似文献   

9.
We investigate the locally rotationally symmetric (LRS) Bianchi type-I cosmological model for stiff matter and a vacuum solution with a cosmological term proportional to R-m (R is the scale factor and m is a positive constant). The cosmological term decreases with time. We obtain that for both the cases the present universe is accelerating with a large fraction of cosmological density in the form of a cosmological term.  相似文献   

10.
The present study deals with spatially homogeneous and locally rotationally symmetric (LRS) Bianchi type II cosmological models with bulk viscous fluid distribution of matter and decaying vacuum energy density Λ. To get the deterministic models of the universe, we assume that the expansion (θ) in the model is proportional to the shear (σ). This leads to condition R=mS n , where R and S are metric potentials, m and n are constants. We have obtained two types of models of the universe for two different values of n. The vacuum energy density Λ for both models is found to be a decreasing function of time and it approaches a small positive value at late time which is supported by recent results from the observations of (SN Ia). Some physical and geometric behaviour of these models are also discussed.  相似文献   

11.
A generally parameterized equation of state (EOS) is investigated in the cosmological evolution with bulk viscosity media modelled as dark fluid, which can be regarded as a unification of dark energy and dark matter. Compared with the case of the perfect fluid, this EOS has possessed four additional parameters, which can be interpreted as the case of the non-perfect fluid with time-dependent viscosity or the model with variable cosmological constant. From this general EOS, a completely integrable dynamical equation to the scale factor is obtained with its solution explicitly given out. (i) In this parameterized model of cosmology, for a special choice of the parameters we can explain the late-time accelerating expansion universe in a new view. The early inflation, the median (relatively late time) deceleration, and the recently cosmic acceleration may be unified in a single equation. (ii) A generalized relation of the Hubble parameter scaling with the redshift is obtained for some cosmology interests. (iii) By using the SNe Ia data to fit the effective viscosity model we show that the case of matter described by p=0p=0 plus with effective viscosity contributions can fit the observational gold data in an acceptable level.  相似文献   

12.
According to ideas of Mach, Whitrow, Dirac, or Hoyle, inertial masses of particles should not be a genuine, predetermined quantity; rather they should represent a relational quantity which by its value somehow reflects the deposition and constellation of all other objects in their cosmic environment. In this paper we want to pick up suggestions given by Thirring and by Hoyle of how, due to requirements of the equivalence of rotations and of general relativistic conformal scale invariance, the particle masses of cosmic objects should vary with the cosmic length scale. We study cosmological consequences of comoving cosmic masses which co-evolve by mass with the expansion of the universe. The vanishing of the covariant divergence of the cosmic energy-momentum tensor under the new prerequisite that matter density only falls off with the reciproke of the squared cosmic scale S(t) then leads to the astonishing result that cosmic pressuredoes not fall off adiabatically but rather falls off in a quasi-isothermal behaviour, varying with S(t) as matter density does. Hence, as a new cosmological fact, it arises that, even in the late phases of cosmic expansion, pressure cannot be neglected what concerns its gravitational action on the cosmic dynamics. We then show that under these conditions the cosmological equations can, however, only be solved if, in addition to matter, also pressure and energy density of the cosmic vacuum are included in the calculation. An unaccelerated expansion with a Hubble parameter falling off with S(t)−1 is obtained for a vacuum energy density decay according to S(t)−2 with a well-tuned proportion of matter and vacuum pressures. As it appears from these results, a universe with particle masses increasing with the cosmic sale S(t) is in fact physically conceivable in an energetically consistent manner, if vacuum energy at the expansion of the universe is converted into mass density of real matter with no net energy loss occuring. This universe in addition also happens to be an economical one which has and keeps a vanishing total energy.  相似文献   

13.
S CHANDEL  SHRI RAM 《Pramana》2016,86(3):681-699
The paper deals with the study of particle creation and bulk viscosity in the evolution of spatially homogeneous and anisotropic Bianchi type-V cosmological models in the framework of Saez–Ballester theory of gravitation. Particle creation and bulk viscosity are considered as separate irreversible processes. The energy–momentum tensor is modified to accommodate the viscous pressure and creation pressure which is associated with the creation of matter out of gravitational field. A special law of variation of Hubble parameter is applied to obtain exact solutions of field equations in two types of cosmologies, one with power-law expansion and the other with exponential expansion. Cosmological model with power-law expansion has a Big-Bang singularity at time t = 0, whereas the model with exponential expansion has no finite singularity. We study bulk viscosity and particle creation in each model in four different cases. The bulk viscosity coefficient is obtained for full causal, Eckart’s and truncated theories. All physical parameters are calculated and thoroughly discussed in both models.  相似文献   

14.
In this paper we have given a generalization of the earlier work by Prigogine et al. (Gen. Relativ. Gravit. 19:1, 1989; Gen. Relativ. Gravit. 21(8):767–776, 1989) who have constructed a phenomenological model of entropy production via particle creation in the very early universe generated out of the vacuum rather than from a singularity, by including radiation also as the energy source and tried to develop an alternative cosmological model in which particle creation prevents the big bang. We developed Radiation dominated model of the universe which shows a general tendency that (i) it originates from instability of vacuum rather than from a singularity. (ii) Up to a characteristic time t c cosmological quantities like density, pressure, Hubble constant and expansion parameter vary rapidly with time. (iii) After the characteristic time these quantities settles down and the models are turned into de-Sitter type model with uniform matter, radiation, creation densities and Hubble’s constant H. The de-Sitter regime survives during a decay time t d then connects continuously to a usual adiabatic matter radiation RW universe. The interesting thing in the paper is that we have related the phenomenological radiation dominated model to macroscopic model of quantum particle creation in the early universe giving rise to the present observed value of cosmic background radiation. It is also found that the dust filled model tallies exactly with that of the Prigogine’s one, which justifies that our model is generalized Prigogine’s model. Although the model originates from instability of vacuum rather than from a singularity, still there is a couple of unavoidable singularities in the model.  相似文献   

15.
16.
Two cosmological models with non-phantom matter having the same expansion of the universe as phantom cosmologies are constructed in Bianchi type-I universe. The exact solutions to the corresponding Einstein field equations have been obtained. The cosmological parameters have been obtained in two interesting cases (i) γ=0 and (ii) γ=1/3. We have also discussed the well-known astrophysical phenomena, namely the look-back time, luminosity distance and event horizon with redshift.  相似文献   

17.
Matter and radiation densities are compared with a constant vacuum energy density of positive cosmological constant, from a few seconds of the universe till the present epoch. Epoch of acceleration is calculated by estimating baryonic density from consideration of finite thickness of last scattering surface and dark matter density from inflationary flatness condition. The calculated epoch of acceleration is found to be in good agreement with recent supernova observations.  相似文献   

18.
19.
20.
Bulk Viscous anisotropic Bianchi-III cosmological models are investigated with time dependent gravitational and cosmological constants in the framework of Einstein’s general relativity. In order to get some useful information about the time varying nature of G and Λ, we have assumed an exponentially decaying rest energy density of the universe. The extracted Newtonian gravitational constant G varies with time but its time varying nature depends on bulk viscosity and the anisotropic nature of the model. The cosmological constant Λ is found to decrease with time to a small but positive value for the models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号